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Abstract

This paper describes a set of feedforward neural network leamning
algorithms based on classical quasi-Newton optimization techniques
which are demonstrated to be up to two orders of magnitude faster
than backward-propagation. Then, through initial scaling of the
inverse Hessian approximate, which makes the quasi-Newton algo-
rithms invariant to scaling of the objective function, the leaming
performance is further improved. Simulations show that initial scal-
ing improves the rate of learning of quasi-Newton-based algorithms
by up to 50%. Overall, more than two to three orders of magni-
tude improvement is achieved compared to backward-propagation.
Finally, the best of these learning methods is used in developing a
small writer-dependent online handwriting recognizer for digits (0
through 8). The recognizer labels the training data correctly with
an accuracy of 96.66%.
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1. Introduction to Neural Network Learning

Neural net (NN) models have been studied for many years
with the hope that the superior learning and recognition
capability of the human brain could be emulated by man-
made machines. Similar massive networks, in the hu-
man brain, make possible the complex pattern and speech
recognition capabilities of humans. In contrast to the Van
Neumann computers which compute sequentially, neural
nets employ huge parallel networks of many densely inter-
connected computational elements called neurons. Neural
networks have been used in many different applications
such as adaptive and learning control, pattern recognition,
image processing, signature recognition, signal processing
and speech recognition, financial problems, etc.

A neuron is the basic computational unit in a neu-
ral network which sums a number of weighted inputs and
passes the sum through a non-linear activation function.
Multi-layer neural networks (Figure 1) consist of a large
number of neurons. Before a neural network can be used
for any purpose, the weights connecting inputs to neurons
and the parameters of the activation fucntions of neurons
should be adjusted so that outputs of the network will
match desired values for specific sets of inputs. The meth-
ods used for adjusting these weights and parameters are
usually referred to as learning algorithms.
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Figure 1. General multi-layer feed-forward neural network.



Rumelhart et al. [1] (also see [2, 3]) reintroduced the
back-propagation learning algorithm to the community in
1986. In this algorithm, a so-called generalized delta rule is
used to calculate an approximate gradient vector to facili-
tate a steepest descent search which minimizes the sum of
squared error between the NN output and the desired out-
put. However, as demonstrated by simulations performed
by Rumehlart et al., low rates of convergence were seen in
practically every problem. Lippman [4] states, ”One diffi-
culty noted by the Back-Propagation algorithm is that in
many cases the number of presentations of training data
required for convergence has been large (more than 100
passes through all the training data).”

In the literature, several methods [4-5] have been
proposed to improve the rate of convergence of learning
by making very limiting assumptions such as linearity for
multi-layer networks. In addition, other more practical
methods have been proposed for speeding the convergence
of the back-propagation technique [6-9]. Some gradient-
free techniques have also been proposed in the literature
which address some practical issues arising in specific prob-
lems. These are problems that require small networks
when no knowledge is available about the activation func-
tions and connectivity of some parts of the networks [10].

The back-propagation technique, as described by
Rumelhart et al., is an approximation to the steepest de-
scent technique. In general, steepest descent techniques
perform well while away from local minima and require
many itertions to converge when close to the minima. On
the other hand, Newton’s method usually converges fast
in the vicinity of minima. In addition, Newton’s mini-
mization technique elegantly handles functions with ill-
conditioned Hessian matrices [11]. It would be desirable to
take advantage of the properties of steepest descent when
the state is far from a minimum and then to use Newton’s
method in the vicinity of the minimum.

To use Newton’s method, the gradient and the ma-
trix of second partial derivatives (Hessian) matrix must
be evaluated. In general, two difficulties have prohibited
the use of Newton’s method for neural network learning:
(1) the complexity of the evaluation of the Hessian, and
(2) the inversion of the Hessian. One way to alleviate these
difficulties is to use a momentum method which would ap-
proximate the diagonal elements of the Hessian matrix and
would remain ignorant of the off-diagonal elements [12].

On the other hand, the class of quasi-Newton methods
provides a better solution to the problem by providing an
iterative estimate for the inverse of the Hessian matrix. If
one selects the initial estimate to be an identity matrix, the
method, at beginning, acts like the steepest descent and
gradually changes into Newton’s method as the estimate
approaches the inverse of the true Hessian. This paper
will first review classical quasi-Newton methods and will
develop neural network learning methods based on these
minimization techniques to increase the speed and accu-
racy of learning. Then, these newly developed learning
methods will be evaluated through simulations.

Upon providing an initial estimate for the inverse of
the Hessian matrix, quasi-Newton methods provide a di-
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rection for the minimization of the objective function and
update the inverse Hessian based on the function and gra-
dient values at two consecutive points. Specifically, the
family of quasi-Newton methods explored in this study is
the Broyden family of quasi-Newton methods.

In addition to the Broyden family of quasi-Newton
methods, this paper also investigates an approach that
scales the initial estimate of the inverse Hessian matrix
to make the methods invariant under objective function
scaling. This method was proposed by Shanno and Phua
[13] and improves the speed and accuracy of the members
of the Broyden family.

In Section 2, we will formulate the neural network
learning problem as a minimization problem. Section 3
applies quasi-Newton methods to develop fast, new learn-
ing algorithms for neural networks. In Section 4 learning
algorithms based on self-scaling are developed to speed
up learning even further. Sections 5 and 6 discuss and
conclude the simulation results conducted for these new

" learning algorithms.

In Section 5, the best of these learning methods is
used in developing a small writer-dependent online hand-
writing recognizer for digits (0 through 9). The accuracy
of classifying the training data is presented.

2. Objective Function and Gradient Vector Formu-
lation for Learning in Feed-Forward Neural Net-
works

The objective of learning for neural networks is to mini-
mize the output error of the output layer (layer L in Fig-
ure 1) of a neural network over a set of P input-output
patterns.
Define,
lell, LJ Layer number in the network)
n; € (1, Ni] (Neuron number in layer {)
p € [1, P] (Pattern index)
! o (Weight of the mth input to neuron n in

w
"ayer I%
o;m Output of neuron n in layer [ for input

pattern ;2
tpn (Desired output of neuron n in layer L)
ipm (Input m of pattern p to the network)

Then, the objective of learning becomes minimization
of the following objective function:

P
Minimize E = ) | E,
P:l

(2.1)

where

Np
E, = z (olf'm_ - t,m,,)g (2.2)
np=1
Let us define a few variables and eventually a state
vector which would include all the variables to be adjusted

to minimize EF,
Activation function parameter vector for level [:

¢'T = [¢1, 45, ... 8]



Vector of intercellular weights to neuron n; at layer I:

IT _ 1 ! 1
uﬂ! = [wﬂll lwﬂ]?! LE = twﬂlNl..l]

Supervector of intercellular weights of level I:
T = T T, )
* State vector for level I:
:FT = [élT’wlT]
Super state vector:

T = [2'T, 277, ..., 2ET)
The gradient vector, g, and the matrix of second partial
derivatives (Hessian matrix), G, for the objective function
are defined as follows:

P
9=V:E=) V,E, (2.4)
p=1
and
P
G=ViE=) ViE, (2.5)
p=1

For detailed formulation of the gradient and the Hessian,
refer to [14].

3. Gradient-Based Minimization Algorithms

This section describes how minimization of an objective
function can be achieved by a set of different algorithms.

3.1 Newton’s Minimization Technique

Write the Taylor series expansion of E for the minimum
z* about a point z;, and let Az, = 2* — z;.

1
E(z") = E(x1)+V} Ele, Azit 5 A2] V2El,, Az +O(A1})
(3.1)

By using the previously defined g and G, and a subscript
k to denote the point where they are evaluated, (3.1) be-
comes

1
E(z*)= E(z:) = Q’IA?P"EAEIG&AIF"O(AIi) (3.2)

If the z* and z; are close to each other, Az} is small, and,
therefore, one may disregard the higher than second-order
terms and thus approximate E with a quadratic function:

1
E(z*) ~ E(zk) + g7 Azx + EAm}kaAzk (3.3)

Note that at a minimum of E(z*), V E|;. has to
be zero. Keeping the current state z; constant and then

taking the gradients of both sides of (3.3), one has

V. E|s % gx + CAzy (3.4)

Setting the gradient of E at z* equal to zero gives

gt +GAzy &0 (3.5)

or

Az ~ —G;lg; (36)

The above equation means that the minimum of a
quadratic function can be found in one step. However,
since F is generally not a quadratic function, a line search
is usually performed along the direction suggested by (3.6)
to determine the minimum along this direction. This re-
sults in

T4l =Tk + A: Sk (37)

where A} is the optimum step size in the direction s; found
by a line search method, and s; is

-1
. (3.8)
G gxll

Newton’s method provides quadratic convergence and
is very efficient in the vicinity of the minima. In order for
E to always descend in value, the matrix G~! should be
positive definite at all times, which is not the case for gen-
eral objective functions except the quadratic ones. There
are various methods to keep the approximation of the in-
verse Hessian matrix (G~!) positive definite. Examples
include Greenstadt’s method [15], Marquardt [16), Leven-
berg [17], and Goldfeld, Quandt and Tratter’s alternative
(18].

There are a couple of reasons why Newton’s method
cannot be easily used for neural network learning. First,
for networks with a small number of neurons, it might be
feasible to find the analytical expression for their Hessian
matrices. However, for larger networks this will be very
difficult, if not impossible. Even if the Hessian matrix
is available, it would be prohibitively expensive to com-
pute the inverse of it for networks other than very small
ones. These limitations are reasons for looking at the fol-
lowing alternatives which can alleviate the aforementioned
probems and still achieve a super-linear rate of conver-
gence.

sy =

3.2 Quasi-Newton Methods

From equation (3.7), we can write the following generalized
recursive algorithm to update the state vector such that a
minimum E will be approached:

Tiyr = 2 — A He Vo E(k) (3.9)

where A* is a scalar step size, and H is a square sym-
metric matrix. Depending on the choice of Hy, different
optimization algorithms will result. If Hy is the identity
(I) matrix, the method is the steepest descent technique
which provides linear convergence. If Hy is the inverse of



the Hessian matrix (G~!), the method is the Newton mini-
mization technique which provides quadratic convergence.

Instead of using the real inverse-Hessian, quasi-
Newton methods use an approximation to the inverse-
Hessian provided by an iterative updating scheme. Quasi-
Newton methods usually start with an initial guess of the
inverse-Hessian matrix such as the identity matrix. Differ-
ent updates for H} are then used, leading to different types
of quasi-Newton methods. Updates are done recursively in
different directions of the inverse-Hessian space, based on
the information obtained from the function and its gradi-
ent. Depending on whether these updates are done in one
or two directions at a time, rank one or rank two methods
are generated. Those quasi-Newton methods which retain
a positive definite Hg are called variable metric methods.
Not all quasi-Newton methods are variable metric updates.

It can be easily shown that the following equation
is true for a quadratic function if H is the exact inverse
Hessian:

HAgy = Az, (3.10)

Normally, quasi-Newton methods try to update their ap-
proximation to H to satisfy the following equation:

Hyp1Agr = Azy (3.11)

This relationship is referred to as the quasi-Newton con-
dition.

In 1959, Davidon [19] introduced the idea of quasi-
Newton methods. In 1965, Barnes [20] and Broyden [21]
independently introduced a method for solving a set of
simultaneous linear equations of the same form as equation
(3.10). Barnes’ equation, (3.12), is a more general one and
Broyden'’s method is a special case of it.

(Azk - H;Ag;-) zg'
z] Age

AH, = -(3.12)

where z; is a direction in which the update to Hj is done
3.2.1 Rank-One Updates to Inverse Hessian

A rank-one update to the inverse Hessian matrix H; would
mean the following:

HJH.l =H.+ auuT

where u is a direction of update. Setting z; in equation
(3.12) equal to the error of equation (3.11) will produce
Broyden’s rank-one update: .

(Azg — Hkﬁgk)(Azk - Hkﬁg;.)T
(Azy — HeAge)TAge

AH, = (3.13)

This update was introduced by Broyden [22], Davidon [23],
and others [24, 25] independently. Let N denote the di-
mension of the state vector z. This update has the prop-

erty that if Azy, Azs, ..., Az are linearly independent,
then at k = N + 1, Hi = G~ for quadratic functions.

Another important feature of Broyden’s update is
that A} of equation (3.13) does not necessarily have to
minimize E in the s; direction. As long as A} is such
that Hyy, will not become singular and the denominator
of (3.13) is not zero, any A} could be used in conjunction
with the Broyden update. However, if the objective func-
tion is non-quadratic, as in the case of neural networks,
the following undesirable aspects of the Broyden update
emerge:

1. H; may not retain its positive definiteness, in
which case it is necessary to use one of the methods in sec-
tion 3.2, such as Greenstadt’s method, to force this matrix
to be positive definite.

2. The correction A H} of equation (3.13) may some-
times become unbounded (sometimes even for quadratic
functions, due to round-off errors).

3. If Az; given by equation (3.13) is by chance in the
same direction as Az;_;, then H;,,; becomes singular or
undetermined. Therefore, if

HiAgy = Az (3.14)

or

(HiAgy — Az )TAg =0 (3.15)
then H;y, should be made equal to H;.

3.2.2 Pearson’s Updates

Pearson [26] introduced other directions of update for the
projection of the error of equation (3.11). In his No.
2 method, he proposed z; = Az in equation (3.12).
Namely

— T
AH& = (AI* Ii‘kAgk)Axk
A=E Agg

(3.16)

His No. 3 method used the other possibility, that is zz =
H;Agk.

(Azy — HeAgr)(HeAge)T
AH = 3.17
” (HeAge)TAgs Ll

Pearson’s methods do not guarantee positive definiteness
of the inverse Hessian Approximate and usually lead to
ill-conditioned matrices. Therefore, it is a good idea to
reset the inverse Hessian approximation to Identity, every
N iterations (i.e., Hnyy = I fort =0,1,2,...0.

3.2.8 Rank-Two Updates

The rank-one updates do not leave much freedom for
choosing the directions of update. This motivated the for-
mulation of rank-two updates such that the objective is
still to satisfy relation (3.11) at every step k. The general
rank two updates are of the following form:

Hyy1 = Hp + auu’ + fovT (3.18)



where the directions u and v and scaling factors « and 8
are different for various methods. It would be a good idea
to update these directions relative to Az and HyAg;.
This would give the following general update:

Az;,yT H l.Ag;,zT
yT Age 2T Agy
A natural choice to retain symmetry is to pick o= 1,
B =-1,y= Az, and z= HAgs. This will generate the
Davidon-Fletcher-Powell (DFP) [27] update

AHr=« +4 (3.19)

Az AzT

_ HyAqpAgi HT
Azl Ag,

Agi H{ Agx

AHy = (3.20)

This algorithm works well, in general, if gx is calcu-
lated with minimal error and H}; does not become il
conditioned. Define

3 Az;AzT
A= A:Tha (3.21)
and
H;Ag:iAgT HT
o el S 3.22
AgTHT Ag; (3.22)
Then it can be proved that [27]
E-1
Y Ai>Hask—N (3.23)
i=0 .
and
k-1
D Bi—Hyask— N (3.24)
i=0
and therefore
Hy —Hask— N (3.25)

for a quadratic function.

An important property of this update is that if
AzTAgi > 0 for all k, then the approximate inverse Hes-
sian matrix will retain its positive definiteness. This con-
dition can be imposed by using a line search method which
satisfies the following relation:

gip1Aze > ogi Az (3.26)
where
o€ [r1]
and
1
rE [01 E]

In 1970, Broyden [28], Fletcher [29], Goldfarb [30],
and Shanno [31] suggested the BFGS update which is dual
with the DFP update. This means that if one applies the
DFP method to updating the Hessian matrix from the
following;:

45

Gk+1ASk = Ag; (3.27)

rather than equation (3.11), and then apply the Sherman-
Morrison inversion formula to obtain an expression for
AH;, the BFGS formula will be obtained:

Agl HyAg: ) Az, AzT
Ax'{Agg AzT Age

Az;,AgE‘Ht + HgAggAx'{

Azl Ag:
The BFGS update has all the qualities of the DFP method
plus it has been noted as working exceptionally well with

inexact line searches and a global convergence proof exists
[27] for it which is not yet the case for DFP.

AHy = (14

(3.28)

3.2.4 Quasi-Newton Updates Through Variational Means

Greenstadt [32] developed a general updating scheme using
variational means by minimizing the Euclidean norm of the
update. This generated the following updating formula:

1
T AgTMAg;

(AzxAgEf M + MAgiAz] — HyAgiAgl Hy

AH,

1

—m(ﬁﬁAn - (Agi HeAgi)) MAgi Agy M)
(3.29)
where M is a positive definite matrix. Greenstadt, in his
paper, proposed two possibilities for M:
1. M = Hy, which results (3.30)

2. M = I, which results (3.31)

1
AHy = ————(Ax . A TH kgl T
- Ag":HtAgg( zpAgy Hy + HeAgr Az
; AgT A
—(1+_gti_)
Ag, HiDg:
HyAgiAg] Hy) (3.30)
1
AH = V. 4.7 (AzpAgF Hy+ HiAge Azl — AgrAgT H
1
———(Agf Az — Ag] HiAgi)AgiAgT :
Ag{Ag,,( gk Az — Agy HiAgi)AgeAg)  (3.31)

These methods do not retain positive definiteness in gen-
eral. However, Goldfarb [30] proposed the use of M =
Hi4y which results in the aforementioned BFGS update
and provides a positive definite approximation to the in-
verse Hessian matrix.

3.3 The Projected Newton Algorithm

Zoutendijk [33] presented a gradient projection method
which is summarized by the following steps:



1. Let Py = I and start from the initial state z;.
. P =1-GGi{GH'G}
= Py — Pio 1 Aqu[AgT P 1 Agy]~'AgT Py,

[

3. If Prgr #0, let 5. = —Prgs

4. Minimize E(z) in direction s

5. If Prgir =0 and g; = 0, then terminate

6. If (Prgr = 0 and gz # 0) or k = N, t.henk_[]

zp = z N, and go to step 1
7. k=k+1, go to step 2
For a derivation of the projection matrix of step 2 see
[34]. The above procedure is equivalent to a quasi-Newton
approach with the initial inverse-Hessian approximation
Hy = I which is then updated by

Agi HT HyAg:

B =8 == T ran

(3.32)
This update is equivalent to the method of Projected
Newton-Raphson given by Pearson [26).

All the aforementioned updates belong to a class of
updates, Broyden’s single parameter family, which is de-
scribed by the following equations:

T gy T Az A T
B TACPAR B oy AN A, (3.33)

g =
*E AgT HeAge AzTAg
where
Az H.A
vi = (AgT HeAgy)} (s POy (3.34)

AzTAge  AgTHiAgy

For example, the Broyden family includes the BFGS and
DFP updates as special cases. Setting 6 to 1 in equation
(3.33) produces the BFGS update, and setting it to zero
gives the DFP update.

Initial Scaling of the Inverse Hessian
Approxlmate

Suppose that the objective function F is scaled by a scalar
c and this results in a new objective function:

E' =cE (4.1)

This objective function has the same minimizer as £ and

its gradient and inverse Hessian are, in terms of those of
E,

g =cq (4.2)

H =(=)H (4.3)

The Newton update for finding the minimizer of a
quadratic function, z*, is 2* = z4 — Hgj. Similarly, the
Newton update for E’ is

1
' =z - Hgp =z — (;)Hcgt =z — Hge

Therefore, the Newton update is invariant under scaling
while quasi-Newton methods are generally not invariant
under scaling.

The Broyden family of updates is generally not in-
variant under scaling. This motivated Oren and Spedicato
[35, 36] to modify this family by introducing a new param-
eter y; such that by appropriately choosing p: and 6, an
update which is invariant under sca.ling of object function
can be obtained. This update is given by the folbwmg
equation:

HgAggAgf{Hl; T A:L‘gA::

= —_—— % 1 fv — Tk

Hyyy pe(He Ag’ngAy; + Orvivy ) + Az E?gt)
4.4

where vy is given by (3.34b).

Equation (4.4), when used with exact line sea.rches,
will become a member of Huang s family [37] where, in his
notation,

1
TR - 45
T e m) “
Equation (4.5) leaves a lot of freedom for choosing the
parameters u; and f; such that invariance under scaling
may be achieved.

In [38], Spedicato proposed the initialization of Hy
to be the inverse of a diagonal matrix whose diagonal is
the diagonal of the true Hessian at zo. This, however,
is not practical for our application since it is very hard
to evaluate the Hessian of a multi-layer neural network.
Shanno and Phua [13] proposed an initial scaling such that

Ho= X3 H} (4.6)

where A is the initial step size given by the line search
algorithm, and H} is the initial guess for the inverse Hes-
sian. This makes Broyden’s one parameter class of up-
dates, given by equation (3.33), self-scaling and invariant
under scaling of the objective function.

Another initial scaling, proposed by Shanno and Phua
[13], uses Oren-Spedicato’s SSVM algorithm and finds the
to provided by that algorithm which minimizes the con-
dition number of (H; ' Hyy,) [14, 34-35). This choice will
put a bound on the condition number of the inverse Hes-
sian approximate and, therefore, will provide numerical
stability. Minimizing this condition number, one finds the
following relationship between p; and :

_ ble—bm)

0 = (e —52) (4.7a)
where
a=Agl HiAg: (4.7b)
b= Azl Ags (4.7¢)
and
c= AIIH_IA:E;; (4.7d)
= A9k Higr



Then it scales the initial estimate of the inverse Hessian
by that value. For example, consider the BFGS update for
which # = 1. po is given by equation (4.7a) to be

b

g Dt

Since p should be equal to one for the BFGS method, the
initial estimate of H is scaled by puo: -

b '

(4.8)

(4.9)

This initial scaling can be evaluated in the same manner
for-all the members of the Broyden single parameter class
of updates using (4.7a) and the appropriate 8, for that
update.

These initial scalings were shown by Shanno and Phua
[13] to improve the performance of the BFGS method over
the SSVM methods of Oren and Spedicato in all the cases
tested but the case of homogeneous objective functions.

5. Simulations and Results

Feedforward neural network learning algorithms based on
most of the aforementioned classical and initial-scaling
quasi-Newton methods are evaluated by computer simu-
lations. In all simulations, inexact line searches have been
used unless otherwise indicated. Inexact line searches, in
general, require fewer function evaluations if it is appropri-
ate for a learning method. In the tables of this paper, E is
the final value of the objective function, P is the number
of presentations of the set of patterns which is equivalent
to the number of evaluations of the objective function, and
G is the number of new directions generated by the scheme
which for quasi-Newton methods is equivalent to the num-
ber of updates made to the inverse Hessian estimate and
the number of gradient evaluations. Finally, F is the num-
ber of floating point operations. In these tables, for the
cases in which local minima were reached, only E is given.
A list of the abbreviations used in the tables is given at
the beginning of this article.

5.1 A Comparison of Learning Methods

The learning algorithms are used for finding weights and
thresholds of two neural networks to emulate the logic of an
XOR gate and an encoder respectively. The XOR. problem
is illustrated with Figure 2 which includes the architecture
of the net and the desired input-output patterns. In addi-
tion, one of the two sets of initial weights and thresholds
used in the simulation is also shown. Another set of initial
conditions differs from the first set by that the magnitude
of initial weights is 5 instead of 1 and the thresholds are
+5 instead of 0. These two sets of initial conditions are
later referred to as XOR I and XOR II.

47

Figure 2. The XOR problem.

The architecture of the net and the desired input-
output patterns for the encoder are given in Figure 3 and
Table 1. Two important measures of the performance are
the number of times the patterns have to be presented and
the total number of floating point operations necessary to
achieve a near-optimal convergence.

opl

Figure 3. Neural network simulating the encoder logic.



Table 1.
Encoder Logic

5.1.1 Classical Quasi-Newton Methods

The results of the classical Broyden family quasi-Newton
methods are given in Table 2. Termination of an algorithm
takes place when E' < le—4 or when |Eg4; — Ei| < 1le—5.
The initial conditions in the XOR I problem is possibly
close to a ridge of the objective function. This renders the
Steepest Descent technique very inefficient. On the other

hand, most quasi-Newton methods tested show a better
Iy P I3 I4 Desired Output performance, up to two orders of magnitude faster. Pear-
son II and BFGS find the global minimum with the least
1 1 1 1 0 number of iterations. Steepest Descent converges an order
of magnitude faster for XOR II when compared to XOR
1 0 1 1 1 I. However, the quasi-Newton methods still have a bet-
ter performance. Again, Pearson II and BFGS converge
1 0 1 0 0 to a near global minimum. However, the DFP, Broyden
and projected Newton-Raphson (Zoutendijk) methods also
0 0 1 0 1 converge to the near global minimum at much the same
speed as BFGS and Pearson II. Similar performance im-
0 0 0 0 0 provement for quasi-Newton methods is also observed in
the encoder problem with Pearson II and BFGS as the
best performers. Also, it is clear that quasi-Newton meth-
ods converge to points that are much closer to the global
minimum (E = 0). Namely, mroe precise neural networks
are obtained.
Table 2.
Results of Classical Quasi-Newton Methods
Broyden DFP BFGS PR Il PRI PNR GRI GR Il SD
E 0.956 0.666 4 e-16 57e-7 0.989 0.955 0.989 0.989 2.8e-5
P 15 36 8553
XORI
G 6 11 8465
B — 15e4 2.2e4 - 8 e6
E| Be-6 3.5¢ -6 96 e-6 2e-4 0.952 0.014 0.226 0.226 7e-6
P 84 58 53 108 31 163
XORII
G 20 17 15 24 — 8 e s 52
F 6 e4 7.7 ¢4 43 e4 6.5e4 — 6.5 ed — e 166
E 7.8 e~7 3e-7 6e-7 1.9e-7 1.092 0.125 1.098 0.9611 " Be=5
£ .
n
c P 34 2l 7 30 1352
0
9 |a 7 2 / 7 1194
e
r
F 7 ed 1e5 8.7 e4 8.9 ed 3.8 e6
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Figure 4. Final state of the neural network simulating the
XOR logic as produced by the BFGS method.

5.1.2 Initial-Scaling for Quasi-Newton Methods

Learning based on quasi-Newton methods with initial scal-

ing methods described by (4.6) and (4.9) are also evalu-

ated with the XOR gate and the encoder emulation prob-

lems. Results of the computer simulations are given in

Table 3 together with those obtained for the BFGS algo-

rith. BFGSa and BFGSb in Table 3 correspond to BFGS
- with initial scalings by (4.6) and (4.9), respectively.

XOR|

o

n bl
o ) n
T T

# of Pres. and New Direct. in Powers of 10
[ )

4 6
S.D. Pearson Ii BFGS

Figure 5. Evaluation of quasi-Newton methods for the
XOR I problem.
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Table 3.
Results of BFGS Method with Initial Scalings a and b

BFGS BFGSa BFGSb
E | 4e-16 7.27 &5 0
p 15 14 9
XOR|
G 6 6 4
F 1.5 e4 1.5 e4 1e4
E | 9.66-6 St | 37>
P 53 a7 49
XORII
G 15 10 13
F | 43e4 3.5e4 4e4
E 6 e-7 3e-7 2e-5
E
n 19 23
¢ P 17
0
d G 7 7 9
=]
r
F 8.7 e4 8.9 e4 1.1e5

5.2 Application to Handwriting Recognition

To demonstrate the new learning algorithms, an appli-
cation of online handwriting recognition was developed
which captures the < z,y > coordinates of a stylus pen
moving on a digitizer tablet when writing the digits 0
through 9 three times. The sampling rate of the tablet
which was used is 90 ‘Hertz and its spatial resolution is
254 dots per inch. The online data is size-normalized, and
it is broken up into elementary pieces with the bound-
aries of these pieces located at the zero y-velocity points
in the data. Figure 7 shows the data that was used in
this experiment. Figure 8 shows the average number of
segments each character was broken into. These segments
are called “frames.” For each frame of the data, there
is a six-dimensional parameter vector of physical features
which were found based on a dynamic model of the gener-
ation of handwriting. Each frame is also assigned a vector
that shows which-character the frame was generated from.
This vector in the training is a vector of ten values for
which the entry corresponding to the character of origin
is set to 1 and all other nine entries are set to 0. The
two vectors correspond to the input and desired outputs
of the network, respectively. Therefore, the network has
six inputs and ten outputs (each of which corresponds to
one digit).
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Figure 6. Evaluation of the quasi-Newton methods for the
encoder problem.
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Figure 7. Digits used in the handwriting recognition ap-
plication.
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Figure 8. Average number of frames per character.
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The architecture used in this application had eleven
hidden units and the initial weights were alternately set
to 1 and —1. Using BFGS with initial scaling “b,” a total
of 561 Hessian updates and 1,610 presentations of the 153
frames from the 30 samples of writing, led to a trained
system with sum of squares of errors at the output layer
of 67.5. This sum of squares of errors is computed over all
characters and all 153 presentations. This translates to an
accuracy of 96.66% which means that out of 30 samples
of digits (3 of each digit) 29 were correctly classified after
training. The only mistake was the misrecognition of a
character “7” as “4.” These results are presented in Fig-
ure 9 with the misrecognized character marked as such. In
the figure, the characters are sorted such that every three
consecutive characters are different samples of some digit
going from 0 to 9.
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Figure 9. Outcome of the recognition.

6. Conclusion

The need for faster learning algorithms and more accurate
networks for applying neural networks to real problems is
obvious. It is well understood that for the clss of neural
network objective functions, steepest descent techniques
are known to perform better away from the minima, and
Newton’s method works better in the vicinity of the min-
ima. Therefore, to obtain the optimal results, one should
take advantage of the best of the two. However, evalua-
tion and inversion of the Hessian matrix which is needed
by Newton’s method poses a difficult and time-consuming
problem for neural network learning.

Classical quasi-Newton methods start off with an es-
timate of the inverse Hessian matrix equal to the identity
matrix which provides the steepest descent direction in
the update. As iterations go on, the quasi-Newton meth-
ods provide an update to the inverse Hessian matrix. This
will, in the limit, provide an optimal direction of descent
based on the momentum of the inverse Hessian amtrix.

Results show an increase in the convergence rate of
about two to three orders of magnitude by quasi-Newton



methods when compared to the steepest descent method.
Pearson II and BFGS methods showed the best perfor-
mance in all the classical quasi-Newton methods tested.
Other quasi-Newton methods converged to local minima
which does not show any weakness on their part. The
problem with local minima is faced by all learning algo-
rithms for neural networks whose error functions contain
many local minima. We also found that condition numbers
of the inverse Hessian approximates given by the BFGS
method were on average lower than those of the other clas-
sical methods such as DFP, etc. This explains, in part, the
better convergence rate of the BFGS algorithm.

The Pearson II algorithm is a much simpler algo-
rithm than BFGS and, therefore, uses less number of float-
ing point oeprations (though more iterations) to converge.
However, Pearson II does not guarantee a positive definite
inverse Hessian approximation while BFGS does, provided
the right line search is used (Sec. 3.2.3). Therefore, there
is a trade-off between the number of floating point oper-
ations and the confidence on positive definiteness of the
inverse Hessian approximation (descent in direction).

Quasi-Newton methods with initial scaling of the ap-
proximate inverse Hessian matrix are known to perform
well especially for problems with a large number of vari-
ables [13]. This fact is illustrated by the outstanding per-
formance of the BFGSa in XOR II and BFGSb in XOR
I compared to BFGS without initial scaling. However, no
major change is seen in the application of the initial scal-
ings to the encoder problem. This is due to the fact that
the initial scaling factor comes out very close to “one,”
meaning that the identity matrix is the best choice for the
initial guess of the inverse Hessian matrix. Optimal con-
ditioning introduced by the initial scaling is also an im-
portant reason for the acceleration of convergence of the
BFGS algorithm.

Figures 5 and 6 show a comparison of the number
of presentations and the number of FLOPs required for
convergence among steepest descent, Pearson II, BFGS,
and BFGS with initial scaling algorithms for the XOR I
and encoder problems. Note that the charts are provided
on a logarithmic scale and show two to three orders of
magnitude reduction in the number of presentations and
FLOPs from the steepest descent technique to the quasi-
Newton methods.

For comparison purposes, large problems cannot be
used due to the fact that neural networks possess many
local minima. The number of these local minima grows
with the complexity of the network (number of hidden
units). Therefore, the XOR and Encoder problems were
used for this purpose. However, to demonstrate that the
best of the methods presented here will not break down un-
der application to larger problems, the online handwriting
recognition problem for digits was formulated and tested.
Of course, for a real handwriting recognizer, lots of data
is needed and a good test of the accuracy of the system
would have to be established through training and test-
ing on different data sets. However, in this paper, since
the main point was not to present the robustness of the
physical features, the clustering and labeling capabilities

of the new learning method were examined through using

the same data for training as testing. Having used different

data sets for this purpose would not show the clustering

capabilities of the network in such a clear way as was done
here. The claim here is that, given a set of feature vec-
tors, the learning algorithm converges quickly, generating
a set of weights which do a good job of labeling the data
(96.66% in this case). For more detailed explanations of

handwriting recognition techniques, see references [39] and

[40].
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