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Abstract

Neural Network Learning algorithms based on Conjugate Gradient Techniques and Quasi Newton
Techniques such as Broyden, DFP, BFGS, and SSVM algorithms require exact or inexact line searches
in order to satisfy their convergence criteria. Line searches are very costly and slow down the learning
process. This paper will present new Neural Network learning algorithms based on Hoshino’s weak
line search technique and Davidon’s Optimally Conditioned line search free technique. Also, a
practical method of using these optimization algorithms is presented such that they will avoid getting
trapped in local minima for the most part. The global minimization problem is a serious one when
quadratically convergent techniques such as Quasi Newton methods are used. Furthermore, to display
the performance of the proposed learning algorithms, the more practical algorithm based on Davidon’s
minimization technique is used in conjunction with a cursive handwriting recognition problem. For
comparison with other algorithms, also a few small benchmark tests are conducted and reported.

1 Introduction

Quadratically Convergent Optimization Techniques have been applied to the problem of learning
in neural networks to create learning techniques with superior speeds and precision compared to pre-
viously used first order methods such as the backpropagation technique. These methods have shown
many orders of magnitude faster convergences and higher final accuracies. [1, 2, 3, 4] At their core,
most of these methods basically use some kind of Conjugate Gradient or Quasi Newton technique. To
ensure convergence, most quadratic learning techniques discussed in the literature require some sort
of exact or inexact line search to be done. For each step in a line search, usually a set of patterns
should be presented to the network. One measure of the speed of learning is the number of pattern
presentations to the network to attain proper learning state.

Learning algorithms based on Conjugate Gradient Techniques and Quasi Newton Techniques such
as Broyden, Davidon-Fletcher-Powell (DFP) and Projected Newton-Raphson require exact line searches
to be done in order to satisfy theoretical convergence criteria and also to practically converge in many
cases. [1] Exact line searches are very costly and slow down the learning process. Some Quasi Newton
techniques get away with inexact line searches. Among these methods we could name Quasi Newton
techniques based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, Pearson’s two updates,



Greenstadt’s two updates and Self-Scaling Variable Metric (SSVM) updates. [1, 2, 3] Some of these
techniques such as SSVM and BFGS meet their promise of inexact line searches better than others.
However, none of the above methods produce learning algorithms which do not require line searches.

Hoshino presented a Variable Metric (Quasi Newton) method which theoretically requires only
inexact line searches to be done. [5] Davidon on the other hand introduced a Quasi Newton method
which does not require any line search to be done most of the time. [6] Davidon’s algorithm only needs
a very crude line search to be done in some special cases which will be discussed later. The theory
behind these two methods is discussed and some practical information is provided regarding the use
of these methods.

Neural Network related objective functions normally possess many local minima by nature and
getting trapped in these local minima usually makes the job of learning much more difficult. These
new learning algorithms also feature answers to the problem of global optimization and avoiding the
local minima through restructuring the network.

The Line Search Free Learning (LSFL) algorithm is then used in developing a new unconstrained
handwriting recognizer which could be used for both on-line and off-line handwriting recognition.
Results of accuracy of this recognizer are also presented. In addition, to evaluate the rate of conver-
gence of the new learning technique, its performance is compared to the best reported results on small
benchmark problems. [3]

The next few sections present the above topics under respective headings. Then the handwriting
recognizer is described and finally results are shown and some conclusions are drawn regarding the
practicality of the new proposed Neural Net Learning techniques.

For a complete description of the derivation of the minimization function generated from a general
feedforward neural network architecture refer to [3]. In [3], a very handy notation is used to simplify
the mapping between a neural network learning problem and unconstrained minimization.

2 Inexact Line Search Learning (ILSL)

As explained in [1, 2, 3], in any feedforward neural network, the problem of learning could be
posed as the problem of minimizing the sum of the squares of errors generated from the differences
between the outputs of the network and the desired values for those outputs. These squares of errors
are summed at the outer layer over all output neurons and all patterns presented to the network. Let
us denote this objective function of minimization by £. Quasi Newton techniques are quadratically
convergent methods which use the gradient information of the objective function to evaluate some
approximate of the inverse of the Hessian (matrix of second partial derivatives) of the function. This
matrix is used to generate a Newton-like direction for minimization. The minimization variables are
the weights connecting the outputs of neurons in one layer to the inputs of consequent layers and the
activation function parameters of the neurons. Activation function parameters could be regarded as
thresholds of these functions in neurons. In a Quasi Newton minimization technique usually two levels
of iterations are done. One iteration level is to approximate the inverse of the Hessian at any iteration
k, Hy. Once this approximation is made at each iteration, several iterations are done to minimize
the objective function along the direction suggested by the inverse Hessian weighted gradient of the
objective function. This minimization is the objective of a line search algorithm. Namely, that value
of A%, A} is found which minimizes the objective function Ej,; through a change in the state variable



z from zj to x4, along the Quasi Newton direction s; given by (1). See (2).
Sy = —Hpgy (1)
Tpyr = T + A4Sk (2)

To ensure convergence, most Quasi Newton techniques require some line search to be done. This
is to ensure that the function will always decay at each iteration. Some methods such as the BFGS
and SSVM techniques do not require an exact line search in practice. [1, 3] These methods require
a line search that will reduce the objective function value by an amount dictated in their converge
requirements. Hoshino in [5] presented a Variable Metric method with the following update for the
inverse Hessian approximate,
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An attractive feature of Hoshino’s Quasi Newton minimization is his theoretical approach to the
use of his update with inexact line searches. Inexact line searches are desired to reduce the number of
function evaluations (number of presentations of the training set to the Neural Net). To evaluate the
Quasi Newton direction of the update at any iteration k£ + 1, Hoshino uses a modified gradient which
is forced to be perpendicular to the search direction. Consider the line search terminating at zj4i.
Also, consider z;,_; to be the true minimum in the direction of search. Furthermore, denote the step
from z; to the true minimum zj_, by Az} and define the scalar ¢, such that,

Az, = e Ay,
Therefore, the gradient at the true minimum, g; ., will be given by,
Gir1 = Gr41 + (Gr41 — Gr) &
= gr+1 t+ €6 AGy (4)

The true minimum would be at the point where the gradient is perpendicular to the direction of search
or,

A:E%'gl/c-}-l =0 (5)
Solving for the €, which satisfies condition (5) gives,
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Using this scalar factor, the expression for the modified gradient is given by,
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This new gradient gives the following Quasi Newton direction at step k£ + 1,

!
Sk+1 = _Hk+1gk+1

Hoshino does not use this modified gradient for his update to the inverse Hessian approximate.
This gradient is only used to obtain the Quasi Newton step. [5] also gives a stability analysis for
this technique. Despite the special handling of inexact line searches, Hoshino’s update has practi-
cally generated matrices with larger condition numbers than those created by the BFGS and SSVM
methods. [1, 2, 3] This makes Hoshino’s technique converge more slowly.



3 Line Search Free Learning (LSFL)

In 1975, Davidon [6] made an important contribution to the improvement of Quasi-Newton methods
by introducing his optimally conditioned method which is to a certain sense free of line searches.
Schnabel [7] has devoted most of his Ph.D. dissertation to evaluating Davidon’s method. Updates
generated by this method are optimally conditioned in the same sense as approached by Oren and
Spedicato in their SSVM updates. [3] Historically, optimally conditioned updates were chosen such
that the ratio of the condition number of Hyy; to that of H; would be minimized. This would produce
updates with invariance under orthogonal transformations. However, Davidon and SSVM updates are
chosen such that they would minimize the condition number of (H; 'Hj,,) through minimizing the
ratio of (A;/Ax) in the eigen-value problem,

Hk+1u = )\Hku

This conditioning produces updates which are invariant under all invertible linear transformations.

Equation (6) is a general Quasi Newton update which includes DFP and BFGS as its special cases.
In (6), the value of ) is chosen such that the condition number of (H; "Hyy,) is minimized. Davidon
uses Az as the initial value of w; and in the following iterations, wy is updated using equation (7).
However, due to the non-quadratic nature of Neural Net learning functions, w, = Az is used in

LSFL.
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where,
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Davidon’s minimization algorithm has three very important features. The first feature is that in
order to improve numerical stability and accuracy of the algorithm, a Jacobian matrix J; is updated
in the place of Hy. This matrix is the square root of Hy in the sense that,

H, = JjT

This is a common practice in numerical analysis. The condition number of the Jacobian J is of order
of the square root of the condition number of matrix H;. This smaller condition number improves
numerical stability of the update, in practical applications. Also, an update in H} given by,

Hyp = (14 w®) H (14 vu”)
in terms of the Jacobian is given by the update,
Jk+1 = (1 + ’U/UT) Jk (8)

In addition, update (8 requires fewer operations and thus produces less roundoff error. Some rank-two
updates in the Broyden single parameter family, such as DFP, BFGS, and SSVM updates turn into
rank-one updates in the Jacobian J;.



The second feature of Davidon’s algorithm stems from the fact that one could approximate the
gradient at the minimum of a quadratic function by a linear interpolation similar to Hoshino’s approach
discussed in the previous section. [8] In this approach, the actual change of gradient and step size
are not used. Instead, their projections are used to enable the algorithm to avoid doing any line
searches. Therefore, line searches are avoided if a quadratic approximation of the objective function
is acceptable. Otherwise, a simple line search is done to ensure sufficient reduction in the value of the
objective function. Shanno and Phua have devoted a paper to the discussion of these projections. [9]
Despite the use of these projections, Davidon’s update still maintains a positive definite approximation
to the inverse Hessian for both quadratic and non-quadratic functions. This fact ensures quadratic
convergence of this algorithm. In real implementation, an equivalent of (6 is used which is given by
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The third feature of this algorithm is that the directions w of (6) need not be orthogonal to the
error of the Quasi-Newton step. These directions are chosen such that the updates and new directions
satisfy the following conditions:

(Hk+1 — Hk)Z =0Vz € ZH

where,

Zy = [Agoy ..., Agr_1]

This ensures approximate inverse Hessian matrices which satisfy the following condition,

Hy 1Ag; = Az, i<k (11)

This condition ensures convergence to the minimum of a quadratic function after N updates to the
inverse Hessian approximate when inexact line searches (or even no line searches) are done.

Davidon’s update, when no projections are used and the inverse Hessian approximate is updated
directly, can be described by equations (12), (13) and (14).
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(12) is the most general forms of Quasi Newton update which encompasses Broyden’s single parameter
family, as well as SSVM, Hoshino and Davidon’s update. [1, 2, 3]

4 Global Minimization

Local convergence has always been a major problem in Neural Network learning algorithms. In
most cases, to avoid this, impractical applications, different initial conditions are used until one case
would converge to the desirable global minimum. This is, however, not very practical and some su-
pervision is necessary. Also, due to the high degrees of nonlinearity of Neural Net objective functions,
picking optimal initial conditions are next to impossible. Classically, when training a Neural Net for
a problem, the architecture of the network is fixed to some intuitively sound architecture with certain
number of hidden units. Then, a learning algorithm is used with different initial conditions until con-
vergence to a near global minimum is attained. Some researchers have also used global optimization
techniques such as the statistical method of Simulated Annealing. [10] Simulated annealing, however,
is known, due to its statistical nature, to be very costly in terms of number of presentations needed
for convergence.

In the LSFL learning algorithm presented in this paper, the author has used a way of restructuring
the network adaptively. In this method the network starts out with one hidden neuron. Then, the
LSFL algorithm is applied to the network until a local minimum is obtained. Once a local minimum
is reached, another neuron is added to the hidden layer and the weights of corresponding this new
neuron are initialized to some random values. However, weights and activation function parameters
corresponding to the original hidden neuron are not touched. Therefore, for the original hidden unit,
the final state of the previous run is the new initial condition. The idea behind this theory is that new
sets of dimensions are introduced by the introduction of this new neuron and the algorithm can once
again start moving. This is with the assumption that the weights of the original neuron do not need
to be changed much. Philosophically, in this way, the problem is being broken up and each hidden
neuron handles a part of the problem. This methodology is then further applied each time a new
local minimum is reached until there is no longer any improvement with the addition of new hidden
neurons. At this point, it is assumed that either the algorithm has reached a global minimum or with
the set of initial conditions we started, there is no more improvement possible. [1, 2, 3] have noted lots
of cases when the global minimum was not reached given a fixed set of hidden units. Most of the cases
discussed in those references have reached a global minimum by applying this new neuron addition
technique. In addition, this method of finding the minimum reduces the amount of computation since
in the beginning, a reduced network is used to do partial learning.

5 Handwriting Recognizer

Two different handwriting recognizers were developed using a feedforward neural network with the
LSFL algorithm. The first was an unconstrained handwriting recognizer. By unconstrained handwrit-
ing we mean writing which consists of any combination of discretely written characters and connected



writing. In other words, no constraint is imposed in the method of writing. This is the most difficult
problem in handwriting recognition due to problems with segmentation. [11, 12] For this method a set
of spatial features were extracted from the handwriting (a total of nine features per pattern presented
to the network.) These features were associated with a fixed size vertical slice of the writing after
it was normalized to a standard size. Each slice contains some overlap with its neighboring slices.
Recognition tests were conducted on handwritten digits. Each digit, on the average, generated about
three of these slices. The nine dimensional feature vector associated with each of these slices was
passed to the network for training. At the output layer, there was one neuron per digit, namely ten
output neurons were present. For each pattern presented at the time of training, the correct neuron
in the output was asked to generate a 1 when the rest of the nine neurons were asked to generate a 0.
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Figure 1: Sum of Squares of Output Error for Digit Recognition Training vs. Number of Neurons in
the Hidden Layer + 1

The network was trained using the LSFL algorithm by being presented with five samples of each
digit. It started with one neuron, as discussed in the previous section, and converged with a final
number of 12 neurons in the hidden layer. Figure [1] shows a graph of the output error versus the
number of hidden neurons plus one. The first error in the graph was obtained from the initial state of
the network with one hidden neuron before learning stated. Later, a set of six samples of each digit
were processed and run through the network. These samples were different from those samples used for
training. A total accuracy of over 87% was obtained in this test. At the recognition stage, a reliability
value was outputted by each output neuron associated with the ten different digits. These reliabilities
were added over neighboring slices to evaluated the most likely path and eventually the intended digit
string. For this purpose, in a truly unconstrained recognition system, any efficient search technique

could be used. [12]

The second test was done on a set of discrete images of handwritten characters. The test was done
on a limited basis just on the first six capital letters of the alphabet, A — F. A total of 4 neurons
were necessary for final convergence to a zero output error. Due to insufficient data and time, only
two samples of each character were used for this training. Figure [2] shows the output of the network
versus the number of neurons used. This network was used to test two samples for each character and
100% accuracy was obtained. These numbers due to the lack of data and larger tests are not very
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Figure 2: Sum of Squares of Qutput Error for Optical Character Recognition vs. Number of Neurons
in the Hidden Layer + 1

reliable. However, they show the practicality of constructing such recognizers if more time were to be
spent on picking better features and collecting data.

6 Other Results and Conclusion

Finally, to compare the performance of the LSFL algorithm with the best reported results in
learning, two small benchmark test were conducted. The networks for these two tests had two and
four hidden neurons respectively. Table of figure [3] shows the results of these tests conducted on the
LSFL network and the results of the benchmark tests done on Steepest Descent, BFGS, and SSVM
algorithms. [3] In the table E denotes the final error after convergence; P denotes the number of pre-
sentations of the training data to the network; G denotes the number of gradient evaluations; and F
denotes the number of floating point operations done in the process of learning.

One could clearly see that for the Exclusive-OR (XOR) problem, there is not much gain by using
the LSFL algorithm. However, by increasing the size of the problem to the Encoder problem, we could
clearly see that avoiding excessive presentation of the training patterns due to the reduced number
of line searches enhances the performance of the learning algorithm. In this case there were almost
the same number of presentations as there were gradient evaluations (Inverse Hessian Updates). This
shows that for much larger problems, the LSFL algorithm could save lots of computation. In addition,
due to the special global minimization, lots of practical problems could take advantage of quadratically
convergent algorithms without having to worry about getting trapped in local minima. In addition,
since there is no real line search necessary for the LSFL algorithm, its application is much simpler.
Finally, two very useful handwriting recognizers were developed which could be enhanced further and
applied to more general recognition problems.

In conclusion we should note that since the ILSL method produces Inverse Hessian updates which
have larger condition number than the already reported BFGS and SSVM methods, it is not considered



in these tests. Also, after thorough examination of different techniques, the author recommends
using the LSFL algorithm with Global Minimization handling as the best overall encountered learning
algorithm for practical problems. The only disadvantage that this algorithm has, and this is a common
problem in using all Quasi Newton based techniques, is the need for storing a huge matrix of the inverse
Hessian approximate or its Jacobian.

SD BFGS SSVM LSFL
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Figure 3: Comparison of LSFL vs. Best Reported Learning Technique on Benchmark Problems
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