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Abstract—This paper presents a novel autoencoder-based
framework for music synthesis and timbre transfer, addressing
limitations of traditional Differentiable Digital Signal Processing
(DDSP). By integrating a Variational Autoencoder (VAE) based
Audio Encoder with a Mamba-enhanced DDSP Decoder, the
framework extracts fundamental frequency (F5) and loudness (L)
directly from waveforms, eliminating reliance on pre-extracted
features. The use of Piano Complex Cepstral Coefficients (PCCC)
with VAE allowed learning a smooth and rich feature space, en-
abling flexible audio manipulation. Bidirectional Mamba demon-
strated improved performance over the baseline DDSP model.
The system achieves high-quality audio generation and efficient
timbre transfer. The proposed framework is versatile, offering
applications in music transcription, timbre transfer, and multi-
instrument synthesis.

Index Terms—ddsp, music, autoencoder, mamba, timbre trans-
fer

I. INTRODUCTION

In the domain of machine learning based signal processing,
music synthesis and source separation are complex tasks for
a model to learn directly from audio sources. Though it is
challenging, it has many applications in melody extraction,
pitch estimation, music transcription, music remixing, karaoke
etc. For this problem, Differentiable Digital Signal Processing
(DDSP) is an evolving framework that merges neural networks
with traditional signal processing techniques. It is an end-to-
end framework with integration of domain knowledge from
signal processing by leveraging the learning capabilities of
deep learning models and interpretability of DSP. Moreover,
DDSP leverages prior knowledge about audio signals to gener-
alize across various musical instruments, even when faced with
limited training data, a challenge for traditional approaches.

The DDSP framework uses fundamental frequency extracted
from audio samples using CREPE, a pitch tracker that employs
a deep convolutional neural network. However, this approach
of DDSP has limitations. It relies on pre-extracted features,
which requires preprocessing and may not generalize well. It
struggles with multi-instrument scenarios and complex timbre-
temporal dynamics interactions, especially with limited train-
ing data. The fixed structure of DDSP models also restricts
flexibility for tasks like timbre transfer or instrument-specific
synthesis without significant retraining.
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In this context, integration of an autoencoder-based syn-
thesis approach could effectively address some of the lim-
itations of DDSP. It learns representations of fundamental
frequency (Fp) and loudness (L) directly from input wave-
forms, eliminating dependency on external extractors. This
approach simplifies preprocessing and creates an instrument-
specific embedding space. The autoencoder consolidates Fj
extraction and loudness estimation into one framework. It can
generate novel Fj and loudness distributions for the instru-
ment, enabling applications like synthetic dataset generation,
timbre-based audio synthesis, and instrument-specific audio
composition. This method provides a flexible solution for
music generation and audio processing.

Therefore, this paper presents an autoencoder-based archi-
tecture that addresses challenges in music synthesis, adaptive
timbre synthesis, and end-to-end training for diverse audio
tasks. The proposed architecture combines a novel Audio
Encoder with an enhanced DDSP Decoder to create a mod-
ular and differentiable framework. The study explores two
distinct approaches of Audio Encoder, i.e., first a Dual Encod-
ing method that leverages both time-domain and frequency-
domain information, and the second encoding strategy is based
on using Piano Complex Cepstral Coefficients (PCCC) to
separate Fy and Loudness for targeted manipulation of audio
characteristics. It also addresses improvement of the DDSP
Decoder using Mamba, an advanced recurrent architecture
along with bidirectional models. The Embedding space anal-
ysis to understand the distinct patterns in F{ and loudness
representations is presented. The main objective of this work
is to develop a novel audio synthesis framework that combines
VAE-based encoding with Mamba-enhanced DDSP synthesis
for high-quality sound generation and timbre transfer. It aims
to disentangle fundamental frequency (Fp) and loudness in-
formation in the latent space allowing more interpretable and
controlled audio synthesis. The proposed modular architecture
is versatile for various audio syntheses and processing, makes
it attractive and finds various applications.

II. LITERATURE REVIEW

The use of DDSP encompasses audio synthesis, MSS, pitch
and timbre control, among other applications. Recently, DDSP
has demonstrated significant progress in fields like differen-
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tiable wavetable synthesis [1], style transfer of audio effects
[2], bandwidth extension of music signals [3], modulation syn-
thesis for sound matching [4], attention-based audio speaker
tracking [5], rendering and identification of impact sounds
[6], as well as acoustically guided sound effects [7]. A multi-
pitch estimator has been used in an end-to-end training model
for differentiable singing voice separation, working well with
limited data [8]. Additionally, music source separation using a
parametric source model was introduced with a differentiable
source-filter model [9]. This model allows reconstruction of
sound mixtures by estimating source model parameters based
on fundamental frequencies.

Recent studies have explored the application of Mamba,
a state space model-based architecture, in audio process-
ing tasks. Audio Mamba demonstrated comparable or better
performance than Audio Spectrogram Transformers in audio
classification across multiple benchmarks [10]. DeFT-Mamba
showed significant improvements in universal sound separation
and polyphonic audio classification [11]. Additionally, Mamba
exhibited competitive performance in various speech applica-
tions, including ASR, text-to-speech, and speech summariza-
tion, while demonstrating efficiency in processing long-form
speech [12]. Variational Autoencoders (VAEs) are generative
models widely used in audio processing, offering advantages
like smooth interpolation between samples and attribute dis-
entanglement. Recent advancements have improved VAEs’
performance in handling long-term dependencies and generat-
ing high-quality waveforms efficiently. The MusicVAE model
introduced a hierarchical decoder for better long-term structure
in musical sequences, enhancing sampling, interpolation, and
reconstruction [13]. The RAVE model further advanced VAE
applications, enabling fast, high-quality waveform synthesis
at 48kHz, running 20 times faster than real-time on standard
CPUs [14]. However, the exploration of VAE-based audio
latent space for Fy and loudness extraction, particularly when
combined with state-of-the-art Mamba architectures in both
unidirectional and bidirectional configurations for DDSP syn-
thesis, remains unexplored.

III. METHODOLOGY

The audio processing architecture uses an autoencoder-
based framework focusing on estimation of Fj and L, as
well as audio synthesis. Figure 1 illustrates the implemented
autoencoder with the DDSP Decoder and Synthesizer blocks.

It has an Audio Encoder that maps the input audio into
a latent vector z. This latent representation is parameterized
using two distinct approaches:

o Differential (Deterministic) Parameterization: In this, the
latent vector is computed as the direct difference between
two feature embeddings, resulting in a standard autoen-
coder representation.

e Variational Autoencoder (VAE): Here, the latent vector z
is defined by a mean (p) and log variance (log(c?)). This
probabilistic representation allows the model to learn a
smooth feature space, potentially capturing more nuanced
audio characteristics.
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Fig. 1. Proposed Architecture diagram.

The obtained latent vector z is then processed through two
task-specific decoders for the input audio, i.e., Fy Decoder
which predicts the fundamental frequency and L Decoder
estimates the loudness. The outputs of these decoders are used
to generate synthesis parameters for the DDSP Decoder. For
example, the parameters drive the Violin Synthesizer, enabling
reconstruction of violin audio. It is compared against the
ground truth to refine the model. Additionally, F, and L are
also validated with ground-truth references. Fy is validated
using CREPE (a pitch estimation algorithm). L is validated
using computed power spectrum. This architecture allows
efficient audio processing for accurate estimation of Fy, L,
and high-quality synthesis of audio.

A. DDSP Decoder

The DDSP Decoder architecture inspired by the work of
Engel et al. (2020), with several modifications and enhance-
ments, it is used in this study to meet specific requirements.
It generates sound synthesis from F{y and L, which are vital
for describing the harmonic and dynamic characteristics of
audio. To establish a baseline, we initially trained the decoder
as outlined by Engel et al., using a Gated Recurrent Unit
(GRU) to generate synthesis parameters from Fy and L. In
our implementation, the z-encoder is removed to simplify
the architecture. This adjustment streamlines the computation
and reducing training complexity for capturing the essential
characteristics of audio from F;; and L. The same has been
showcased in Figure 2.
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Fig. 2. Modified DDSP Architecture



To enhance the decoder performance, we replaced the GRU
in the original DDSP model with a more recent recurrent
architecture Mamba, which has shown to better capture tempo-
ral dependencies and leverage contextual information within
text sequences. Unlike traditional recurrent neural networks
(RNNs) or Long Short-Term Memory (LSTM) networks,
Mamba employs a novel architecture that allows it to process
sequences with linear time complexity while maintaining
the ability to model complex temporal relationships. Hence,
Mamba model well suited for this task due to its ability to
efficiently capture long-range dependencies in sequential data.

For further improvements we experimented with bidirec-
tional architectures, namely Bidirectional GRU (Bi-GRU) and
Bidirectional Mamba (BiMamba). Bidirectional models in-
corporate contextual information from both past and future
frames, particularly advantageous in audio synthesis tasks [10],
where Fjy and L are known for the entire duration of a clip.
The temporal nature of audio signals necessitates capturing
relationships across both past and future frames to accurately
reproduce dynamics and nuances. For example:

o In a musical passage with a crescendo, knowing both the
start and peak of the loudness change ensures a smooth
and realistic transition.

o Synthesizing vibrato effects requires knowledge of the
complete oscillatory pattern in Fy, including its beginning
and end, to accurately replicate it.

Bidirectional models are crucial for tasks such as pitch transi-
tions, dynamic swells, or pauses, where future frames contain
critical cues for generating accurate synthesis parameters.

B. Audio Encoder

The Audio Encoder is a critical component in our system,
responsible for transforming raw audio signals into robust
latent representations. We have implemented two distinct ap-
proaches to achieve this goal. The general architecture design
for both these approaches is provided in Figure 3.
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Fig. 3. Proposed Waveform, STFT and PCCC encoders

1) Dual Encoding Approach: This Approach combines
waveform and spectrogram encoding to capture comprehensive

audio features. The waveform encoder processes 4-second au-
dio clips (64000 samples at 16 kHz) into 400 non-overlapping
10 ms snippets, each transformed into a 160-dimensional
embedding vector by reshaping. This waveform adjusted in
a sequence is processed by a Mamba model. The STFT
encoder applies Short-Time Fourier Transform with 2048
bins, a 512-sample Hanning window, and 160-sample hop
length. The resulting 1025x401 is processed to generate a log-
magnitude spectrogram which is processed by another Mamba
model. The final representation integrates outputs from both
encoders through concatenation. This approach captures both
fine-grained temporal dynamics and broader spectral character-
istics, creating a robust latent representation for various audio
processing tasks.

2) Separate Fy and Loudness Encoding: This approach
learns distinct representations for fundamental frequency (Fj)
and loudness. It is based on Piano Complex Cepstral Co-
efficients (PCCC) for frequency encoding and a waveform
encoder for loudness information. The PCCC Encoder extracts
frequency information, including harmonics and overtones,
focusing on piano-like sounds.

The PCCC can be described with the following equations:

o Complex filterbank application to STFT spectrum:
N-1
=Y. XA
=0

where X (f) is the complex STFT of the input signal,
Hy(f) is the k-th complex triangular filter, and N is the
number of frequency bins. The filterbank H was designed
using triangular filters centered at piano key frequencies,
with overlaps defined by neighboring keys.

e Complex Log Spectrum Computation:

L(k) =log(S(k) +¢€)

where € is a small constant to avoid log(0).

¢ Discrete Cosine Transform (DCT) and Discrete Sine
Transform (DST) application to real and imaginary parts
respectively:

K-1
(m) = Re(L(k))

K
k=0

wzémwmmﬁﬁ)

where K is the number of filters (88 piano keys), m is
the cepstral coefficient index, and Re and Im denote real
and imaginary parts respectively.
The final PCCC features are formed by concatenating the
coefficients from both transforms.

PCCC = [C(0), ...,C(M — 1), 5(0), ...

Loudness information is extracted directly from the audio
waveform using a separate encoder similar to the previously
discussed waveform encoder. This approach allows for tar-
geted manipulation and analysis of audio characteristics.

os <7rm(k + 0.5))
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C. Fy and L Decoder

The Fy and L Decoders are dense neural networks with
the activation function tanh. The Fy decoder is designed to
estimate pitch values in cents, a logarithmic unit representing
musical intervals relative to a reference pitch fr (10 Hz in
this case). The relationship between frequency f in Hz and
cents is given by: ¢(f) = 1200 - log, % The decoder outputs
a 435-dimensional vector, with each dimension representing
a 20-cent frequency bin covering six octaves from A0 (27.50
Hz) to C8 (4186.01 Hz). The pitch estimate ¢ is calculated as a
weighted averagisgf Athe associated pitches c; according to the
Pty
derived as: f = fres - 2¢/12°0 To train the model, the target
outputs are 435-dimensional vectors which represents the
probability distribution of the fundamental frequency and sums
up to 1. To soften the penalty for close predictions, the target

is Gaussian-blurred in frequency with a standard deviation of

_ (ci—Cme)®
2252

allows for better pitch estimation and training.

The loudness decoder outputs a single value representing
the loudness in decibels (dB). The decoder solves a regression
problem using the sum of mean squared error (MSE) and mean
absolute error (MAE) loss between the predicted and ground
truth loudness values. The ground truth loudness is computed
as the log-magnitude of the power spectrum averaged across
frequency bins.

output §: ¢ = The frequency estimate in Hz is then

25 cents: y; = exp ( ) This soft-penalty approach

IV. RESULTS
A. Dataset

Our experiments used two datasets: the MDB-stem-synth
dataset and a custom dataset from Bach’s Violin Partita No.
1. The MDB-stem-synth dataset is a benchmark for music
information retrieval and synthesis tasks, containing 230 tracks
of synthesized multi-instrument recordings. We focused on 14
violin tracks, which is about 50 minutes of effective audio
after removing extended silences. We applied a 100 ms silence
threshold and resampled the audio to 16 kHz.

The custom dataset from Bach’s Violin Partita No. 1 pro-
vided real-world violin recordings. It includes five movements
performed by John Garner, offering about 13 minutes of solo
violin music. These recordings were already at 16 kHz, match-
ing our model’s requirements. This combination of synthesized
and real-world data allowed for a comprehensive evaluation of
our model’s performance.

B. Audio Encoder

We evaluated two primary encoding approaches: the Dual
Encoding Model and the separate F{; and L Encoders. Both
approaches were trained on the Bach Violin Partita dataset,
providing insights into their respective performances and lim-
itations. The training process consisted of 300 epochs with
a step learning rate decay, scaling the learning rate by 0.995
every 2 steps, starting from a base learning rate of 2 x 10~

For the Dual Encoding Model, the Differential Autoencoder
(AE) approach demonstrated robust convergence. The model

achieved a Multiscale Spectral Loss (MSS) loss of 5.936,
indicating good reconstruction of the audio. The Fy loss,
representing the pitch or fundamental frequency error, was
2.686, reflecting the model’s accuracy in predicting frequency
components. Notably, the Loudness loss was 0.046, suggest-
ing excellent performance in capturing the audio’s loudness
characteristics. These results indicate that the Differential
AE approach effectively captured essential audio features. In
contrast, the Variational Autoencoder (VAE) approach encoun-
tered significant challenges. The model failed to converge on
the dataset due to posterior collapse. Despite implementing
various techniques from the literature to mitigate this issue,
the model’s performance remained poor. The learned Fj
exhibited substantial deviation from the ground truth, resulting
in exceptionally high loss values. Given these limitations, we
did not pursue further exploration of the Dual Encoding Model
on the MDB-stem-synth dataset.

The separate F; and loudness models demonstrated strong
convergence during training. It exhibited superior performance
and better convergence characteristics. Following the promis-
ing results from this model on the Bach Violin Partita dataset,
we extended our evaluation to the more diverse MDB-stem-
synth dataset. We compared the performance of two encoding
approaches: Differential Encoding and Variational Autoen-
coder (VAE) Encoding, by training the different decoders, i.e.,
Fy Decoder, Loudness Decoder and DDSP Decoder.

Loss Differential Encoding | VAE Encoding
F Mean 3.542 + 0.134 3.341 £+ 0.115
0 SD 3.705 3.184
Mean 0.072 £ 0.002 0.072 £ 0.002
Loudness
SD 0.054 0.054
MSS Mean 5.796 + 0.032 5.796 £ 0.033
SD 0.900 0914

Both Differential and VAE Encoding schemes have shown
similar performance across metrics. VAE has lower F{ loss
(3.341 £ 0.115) as compared to that of differential encoding
(3.542 4+ 0.134). Both methods demonstrate identical Loud-
ness loss (0.072 £+ 0.002) and MSS loss (5.796 £ 0.03).
These results indicate comparable effectiveness on the MDB-
stem-synth dataset, with VAE showing slight advantage in £y
prediction.

Since, we observe that both Differential and Autoencoder
approaches are provided good results, we extended the analysis
to explore the properties of the VAE embedding space. Figure
4 presents the t-SNE projections of the Fy and Loudness
embeddings learned by the VAE model on the MDB-stem-
synth dataset.

The distinct patterns observed in these embeddings reflect
the inherent nature of musical attributes. The loudness exhib-
ited a smooth, continuous distribution in the embedding space
(right), while the fundamental frequencies (Fy) form discrete
clusters (left). This clustering behavior in Fy embeddings
attributed to the discrete nature of musical notes, ranging from
A0 to C8 on the musical scale.



t-SNE projection of FO embeddings t-SNE projection of Loudness embeddings

> o v e

40

¢

e
’ P

20

~ . o~
2 o * 3 : w 400
) o ’ » B 0
o : &

-20 - 3004 —— Sample 1

-2 —
_a0 k . 0 Sample 2
—— Interpolated
60 ] 2001 T T T T
- » . —40 0 100 200 300 400 0
-80 . Interpolation at 0.3 Interpolation at 0.3
-75 =50 =25 25 50 75 -40  -20 20 40

Interpolation at 0 Interpolation at 0

1
ol
1]
oy
3]
4]
s
0 100 200 300 40

600 1

500

0 0
t-SNE 1 t-SNE 1

Fig. 4. t-SNE visualization of VAE embeddings for Fy (left) and L (right)

To validate this observation, we analyzed the distribution
of ground truth frequencies generated by CREPE, as shown
in Figure 5. The frequency histogram reveals distinct peaks
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Fig. 5. Histogram of F{ in the dataset extracted by CREPE model

corresponding to specific musical notes. The observed devia-
tions around these peaks can be attributed to the estimation
process of the CREPE model, which provides the ground
truth annotations. These slight variations also capture natural
phenomena in violin performance, such as vibrato and pitch
transitions between notes.

An interpolation experiment was conducted to investigate
the smoothness of the Audio Encoder’s embedding space using
linear interpolation: Ziner, = 21 + (22 — 21), where z; and
zo are the embeddings of two different audio samples, and «
varies from 0 to 1. Results are shown in Figure 6 with distinct
behaviors for Fy and L embeddings. Loudness interpolation
demonstrates smooth transitions between samples, supported
by t-SNE visualization showing a continuous distribution.
However, Fj interpolation exhibits binary switching behavior,
particularly at « = 0.5, due to the Fy Decoder’s output
being a probability distribution over discrete frequencies and
the inherent discreteness of musical pitch. Therefore t-SNE
projections reinforce the characteristics of the embeddings Fy,
which form distinct clusters reflecting discrete musical pitch,
while loudness create a continuous distribution arising from
smooth changes in amplitude variations.
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C. DDSP Decoder

We trained four configurations of the DDSP Decoder on
the MDB-synth-dataset using 30 minutes of audio for training
and 20 minutes for validation. Each configuration underwent
200 epochs with 5000 randomly sampled clips per epoch. The
training used a base learning rate of 2e-4 with learning rate
decay on plateau. The validation results were generated using
the remaining 20 minutes of audio.

Out of the four configurations i.e., GRU, Mamba, BiGRU



Model MSS Loss (Mean) | MSS Loss (SD)
GRU (Baseline) 5.84 + 0.02 0.59
Mamba 5.79 + 0.02 0.58
BiGRU 5.63 + 0.02 0.58
BiMamba 5.56 + 0.02 0.57

and BiMamba, the BiMamba configuration resulted the lowest
MSS loss of 5.56 + 0.02, showing a significant improvement
over the baseline GRU model’s 5.84 + 0.02. The bidirec-
tional architectures (BiGRU and BiMamba) consistently out-
performed their unidirectional counterparts. Additionally, the
Mamba-based models demonstrated improved computational
efficiency, reducing the training time from 58 seconds per 20K
second audio epoch with GRU to 45 seconds with Mamba.

The spectrograms of the ground truth and synthesized audio
using the BiMamba model are shown in Figure 7.
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Fig. 7. Comparison of ground truth and synthesized audio spectrograms.

The synthesized spectrogram matches the ground truth in
harmonic structure and temporal patterns. The fundamental
frequency of the singal is given by the cyan line in the
ground truth spectrogram. The additive synthesis captures the
harmonic content while the subtractive synthesis shows noise
components. The loudness curve represents amplitude varia-
tions and the impulse response shows acoustic modeling. The
similarity between ground truth and synthesized spectrograms
demonstrates the BiMamba model’s effectiveness in violin
audio synthesis.

Figure 8 shows the results of a timbre transfer task using
the trained model on a singing voice track by Adele. The
synthesized spectrograms exhibit characteristic violin har-
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Fig. 8. Spectrograms of timbre transfer of a music sample.

monic structures and spectral envelopes while maintaining the
temporal and pitch patterns of the original vocals.

V. CONCLUSION

A fully differentiable state-of-the-art modular framework
using VAE based Audio Encoder combined with Mamba im-
proved DDSP has been presented for smooth controlled audio
generation. The Audio Encoder based latent space analysis
with t-SNE projections reveled clustered F;y embeddings and
continuous L distributions. It shows that the model is capable
for synthetic audio generation with musical note frequencies
with smooth loudness interpolation capabilities. The DDSP
Decoder, particularly in its bidirectional Mamba configuration
(BiMamba), achieves superior performance with an MSS loss
of 5.56 £+ 0.02, improving upon the baseline GRU model’s
5.84 £ 0.02. The Mamba-based architectures also demonstrate
improved computational efficiency, reducing training time
from 58 to 45 seconds per epoch. The system successfully
preserves harmonic structures and temporal dynamics in vi-
olin synthesis. Furthermore, the model demonstrates effec-
tive timbre transfer capabilities, successfully mapping vocal
characteristics to violin timbre while maintaining musical
content. This study demonstrates an effective utilization of
advantages of VAE’s disentangled latent space with Mamba’s
efficient sequence modeling capabilities for high-quality audio
synthesis and timbre transfer applications, while maintaining
interpretability and control. Future work could explore ex-
tending this architecture to multi-instrumental synthesis and
investigating more complex timbre transfer scenarios.
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