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Chapter 1

Introduction



The objective of this research is to develop new learning methods based upon
optimization techniques. Two different but related areas are focused on. The first is
to develop new learning algorithms for neural networks. These new learning
techniques could later be used in a variety of applications such as control and pattern
recognition applications. The second is to develop new learning controllers which

improve in their performance each time they are requested to repeat a task.

1.1. Introduction to Neural Network Learning

Neural net (NN) models have been studied for many years with the hope that the
superior learning and recognition capability of the human brain could be emulated by
man-made machines. Similar massive networks, in the human brain, make the
complex pattern and speech recognition of humans possible. In contrast to the Von
Neumann computers which compute sequentially, neural nets employ huge parallel
networks of many densely interconnected computational elements called neurons.
Neural networks have been used in many different applications such as Adaptive and
Learning Control, Pattern Recognition, Image Processing, Signature Recognition,

Signal Processing and Speech Recognition, Financial Problems, etc.

A neuron is the most elementary computational unit in a neural network which
sums a number of weighted inputs and passes the result through a non-linear
activation function. Multi-layer neural networks (figure 1.1) consist of a large
number of neurons. Before a neural network can be used for any purpose, the weights
connecting inputs to neurons and the parameters of the activation functions of neurons
should be adjusted so that outputs of the network will match desired values for
specific sets of inputs. The methods used for adjusting these weights and parameters

are usually referred to as learning algorithms.



Rumelhart et al.[ll introduced a learning theory for multi-layer neural nets in
1986 and to some extent demonstrated that a general learning algorithm for multi-
layer Neural Networks is possible. In a learning algorithm called the Back-
Propagation technique, they used the so called generalized delta rule to calculate an
approximate gradient vector which is then used by a steepest descent search to
minimize the difference between the NN output and the desired output. However, as
demonstrated by simulations obtained by Rumelhart et al., low rates of convergence
were seen in practically every problem. Lippmann!? states, "One difficulty noted by
the Back-Propagation algorithm is that in many cases the number of presentations of
training data required for convergence has been large (more than 100 passes through

all the training data.)"

We have tried the usage of neural networks for developing learning control
schemes for repetitive manufacturing processes. These processes include machining,
milling, robotics, etc. In the neural networks approach to solving the learning control
problem in for instance machining, a scrap piece has to be machined to provide the
neural network with a training set of data. If a slow learning neural network is used, it
would generate a great deal of waste in scrap pieces to achieve learning. This
problem makes it imperative to develop new learning algorithms for neural networks
with orders of magnitude of faster learning compared to the Back-Propagation
technique. Also, in applications such as speech or hand writing recognition, the one
percent error margin of the Back-Propagation learning is no longer acceptable and a
more precise convergence would be desirable. Once new faster converging and more
accurate learning algorithms are present, these problems and similar problems in other
applications of neural networks could be alleviated, thus making neural networks

much more practical.



In the literature, several methods!2-3] have been proposed to increase the rate of
convergence of learning by making strong assumptions such as linearity for multi-
layer networks. In addition, other more practical methods have recently been

proposed for speeding the convergence of the Back-Propagation technique.[4-7]

The Back-Propagation technique is a special case of the steepest descent
technique with some additional assumptions. In general, steepest descent techniques
perform well while away from local minima and require many iterations to converge
when close to the minima. On the other hand, Newton's method usually converges
fast in the vicinity of the minima. In addition, Newton's minimization technique
handles functions with ill-conditioned Hessian matrices elegantly [8]. It would be
desirable to take advantage of the properties of steepest descent when the state is far

from minimal and then to use Newton's method in the vicinity of the minimum.

To use Newton's method, the first gradient and the matrix of second partial
derivatives (Hessian) matrix should be evaluated. The moment one talks about
evaluating the Hessian matrix, it becomes clear that a layer by layer adjustment of the
weights is not possible because there are elements of the Hessian which are related to
neurons in different layers. In general, two difficulties have prohibited the use of
Newton's method for neural network learning: 1) the complexity of the evaluation of
the Hessian, and 2) the inversion of the Hessian. One way to alleviate these
difficulties is to use a momentum method which would approximate the diagonal

elements of the Hessian matrix and would stay ignorant of the off-diagonal elements.

(9]



On the other hand, Quasi-Newton methods provide another solution to the

problem, by providing an iterative estimate for the inverse of the Hessian matrix. If

one

o
o o
= P14 L pol O3l — PN

|
avert (0 (0 (0 (0

2 O O O

O
S
oo ) G0 e O

===

11 '12 13 iM

Lot d Lol dL Tps L Tomd

figure 1.1 (General Multi-Layer Feed-Forward Neural Network)



selects the initial estimate to be an identity matrix, initially, the method coincides with
the steepest descent technique and gradually changes into Newton's method as the
estimate approaches the inverse of the Hessian. This thesis will first review the state-
of-the-art in Quasi-Newton and conjugate gradient methods and will develop new
learning methods based on these minimization techniques, increasing the speed and
accuracy of learning of feedforwad neural networks drastically. Then, these newly

developed learning methods will be evaluated through simulations.

In many cases such as in control problems, one might try to train a neural
network which might include one or more neurons with unknown activation
functions, such as the case when an unknown nonlinear plant to be controlled is
assumed to be a neuron among several other neurons for which the activation
functions are known. In such cases, the whole network should be trained without any
knowledge of the functions and gradients of individual neurons. In gradient based
learning techniques, the gradient evaluation requires knowledge of the activation
functions of all neurons including the controlled plant. = In some other cases,
activation functions are desired which might not have continuous derivatives. One
such activation function is the threshold function or the step function which is thought
to be used in biological neurons. For these, functions, gradient based techniques will
fail. In these cases, the step function is approximated with a logistic or similar
smooth function. These and some other special and very important problems could be

alleviated if fast gradient-free learning techniques were available.

A series of gradient-free minimization schemes are reviewed and used to
develop new learning algorithms for neural networks to be applicable to the
aforementioned problems and to minimize the need for extra software/hardware.

These methods do not require the evaluation of the gradient or Hessian of the



objective function and only require the objective function evaluation which can be
performed by the network itself. This property makes learning algorithms based on
gradient-free techniques in some sense independent of the structure and connectivity
of neurons in the hidden layers. An attractive consequence of this independence is
that upon possible changes in the configuration, of the network, the network could
still be trained in the same manner. As an example of this feature, consider a neural
network with several neurons which uses some gradient learning technique. For this
technique to be used, an algorithm should be developed which would include
theoretical formulas for the gradient of the network. At once, however, a neuron
becomes disabled or a connection is severed. The gradient based learning algorithm
is no longer valid and cannot be used for learning. In this case, either the network
should be thrown away or a new algorithm should be formulated for its new structure.
The gradient-free techniques, however, would operate with either structure and no
change is necessary to the network or to the learning algorithm. This is another
practical feature which is sought by developing fast gradient-free learning techniques.

The new learning methods will be evaluated through simulations.

1.2. Introduction to Discrete-Time Learning Control

A large percentage of the practical applications of control systems involve cases
in which a system is repeatedly asked to perform the same task. Examples include
tracking problems for robots on assembly lines, as well as a large number of
manufacturing applications. Standard controller design methods produce systems that
repeat the same errors everytime the command is repeated. It is a bit primitive to
persist in repeating the same errors. In the last few years several theorems of learning

control have been developed in the literature, generating controllers which can learn



from previous experience at performing a specific task!10-13], Two learning control

algorithms are proposed here.

The first algorithm minimizes the output errors using a generalized secant
method for recursive identification. In this approach, a time variant, discrete-time
model of the control system is devised in the form of a system of linear algebraic
equations relating the change in the state of the system to the change in the control
action from one repetition of the task to another. This set of linear equations gives the
transition between any two repetitions. This system is then solved for the appropriate
control action that will minimize the tracking error of the controlled dynamic system,
only requiring the availability of the order of the system, without any prior knowledge
of the system parameters. This leads to a learning-adaptive controller, the
performance of which is tested by applying it in simulation to controlling two

different nonlinear plants.

In a second approach, a self-tuning (adaptive) controller based on the recursive
least square parameter estimation is presented. The learning recursive least square
parameter estimator applies the recursive least square parameter estimator, which is
normally used in self-tuning regulators, in the repetition domain for each discrete time
step. This will allow learning to be established. In applying this learning-adaptive
controller, again, the order of the system should be known, but no prior knowledge of
the system parameters is required. The performance of this control scheme is tested

by simulation and experiment in controlling three different nonlinear plants.

1.3. Thesis Structure
This thesis consists of two major parts. In these two parts, the problems of

learning in neural networks and learning control are treated, respectively.



Part I (chapters 2-6) presents several new learning schemes for neural networks.
Chapter 2 formulates the neural network learning problem as a minimization problem.
Chapter 3 applies gradient-based minimization techniques on this problem to develop
fast new learning algorithms for the adjustment of neural network intercellular
weights and activation function parameters. In chapter 4, more implementable NN
learning algorithms are developed based on gradient-free minimization schemes.
These methods are in general independent of the architecture of the neural networks.
Chapters 5 and 6 discuss and conclude the simulation results conducted for these new
learning algorithms. Simulation results show two to three orders of magnitude
improvement on the rate of learning when compared with present state-of-the-art

learning techniques.

Part II (chapters 7 and 8) presents two new learning control algorithms. In
Chapter 7, an optimization approach is taken in solving the learning control problem.
An objective function is formulated for the general time-variant learning control
problem so that the tracking error of the controlled system can be minimized
repetition after repetition. Using this objective function, a learning-adaptive control
scheme is generated based on the Generalized Secant Method and is shown in
simulation results, as applied to the control of two nonlinear dynamic systems
performing highly nonlinear tasks, to perform very well. Chapter 8 uses a different
approach for solving the learning control problem. A learning parameter estimator
based on the recursive least squares algorithm is developed which in conjunction with
a suitable control law forms a learning self-tuning regulator. Simulations of this
learning parameter estimator have also been conducted on controlling the same

nonlinear plants as in chapter 7 and have shown to be very effective. In addition,



very good experimental results have been obtained in the application ot this learning
control technique to the control of a Piezoelectric tool in a diamond cutting lathe with

highly nonlinear dynamics including hysteresis.

Appendix A provides a summary of the mathematics required for the
formulations of parts I and II. Finally, Appendix B provides a list of the abbreviations

used in this thesis.
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Part I: LEARNING IN NEURAL NETWORKS
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Chapter 2

Objective Function and Gradient Vector Formulation for

Learning in Feed-Forward Neural Networks

12



The objective of learning, in the problem of learning in neural networks, is to
minimize the output error of the top (output) layer (layer L in figure 1.1) of a neural

network over a set of P input-output patterns.

Define,
ICE[1,L] (Layer number in the network)
n,E[1,N,] (Neuron number in layer /)
p CE[1, P] (Pattern number)
ol . (Weighting factor between the mt? input and neuron n in
layer /)
Ol (Output of neuron n of layer / for input pattern p)
ton (Desired output of neuron n in layer L)
ipm (Input m of pattern p to the network)

Then, the objective of learning becomes,

PN
m'nim'zeE=Z (0;1'%1)2 (1) o
FLn= '
Define,
N
L 2
E, =Z(°m “ty) 02
r’L=
then,

P
E=Z Ey @ 2.3)
=
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Let us define a few variables and eventually a state vector which would include

all the variables to be optimized for minimum E:

/T
=[ (pll (plz ) cp:\, ] (Adivation function parameter vector for level /)

T
wL =[ uiﬂ, ufﬁ, e wﬁwu 1 (Vedor of intercellular weights to neuron n, at layer /)

T m T iT
w

=[wy, Wy, wy ] (Supervector of intercdlular weights of level /)
T T T

X =[¢,w ] (State vector for level /)

T T 2T LT

X =[x ,x ,...,x 1] (Super state vector)

Let j denote any element of the state vector X, then,
ok
% o .

and by the chain rule,

acph 60m 6([)W (2.6a)

R ™ .60)
Uy, 9O My, :

|'l s (sigei i f

(using indicial notation) 22.7)
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In equation (2.7) the index notation has been employed, i.e.,

[+1 / 141 /
aoml+1 aom il aopnl+1 aom
—— T <> T T (traditiond notation)
aom aoml N=. aom aoml

Take, for example, the logistic function,

! 1
0= U
S
1+e
where,
Ni
I F1 /
2 _z ( O wf‘vfh) +
=1
then,
|
00
_7‘ = (8)
o,
|
aom i Jm 1 "
T O,
wﬂfh
and,
|
40
m_| |
GT 'Jm %&1 t
°m1
where,

dy=—— il

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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However,

o = 1
M J
1 +e S (2.14)
from which,
Slm 1
e =T - ]. (12)
Om (2.15)

Rewrite equation (2.13) using (2.15),

d, =0, (1-0;) ») (2.16)

From (2.16), (2.10), (2.11), and (2.12),

/
90

/ I

—F;T=om(1-om) (14)

6([)n 2.17)
60’
gy 5
0 (2.18)
wrml

and,

I

a0

mo I
__= 0 (]_-O ) (16)
60;1 Uhn, Oy 1Oy 2.19)

We can therefore use equations 2.17-2.19 and 2.4-2.7 to evaluate the elements of

gradient of E with respect to the super state vector x (—,E). Define,
P

9=V E =; V.E, (Gradient Vector) 2.20)

and,



P
=

Most minimization techniques require gradient evaluations of the objective

function. The above formulation is used in most of the minimization techniques

discussed in this thesis.

Example: The Exclusive-OR (XOR) Problem
Take the example of a network of three neurons (figure 2.1) which is employed

to simulate the exclusive-OR (XOR) logic pattern (table 2.1.)

2 ("fl

W1
1 1
¢ ®
4 1 1 4
A Wy Wo A
1 1
G, W
ipl ip2

figure 2.1 (Neural Network Simulating the Exclusive-OR Logic)
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Input PattermnOutput Patten
0 0 0
1 0 1
0 1 1
1 1 0

table 2.1 (XOR Logic)

The objective function of minimization will then be,
4

2 2
E =Z (O ~ ) (2.22)
=

and the super state vector is defined by the following sequence of definitions,

=l ¢, 6]
o =[¢]
T 1 1 1 1
=[ Wy, Wy Wy, Wy ]
2T 2 2

=[ Wy, W]

1 1 1 2

T 1 1 1 2 2
X =00 ¢ Wy Wiy Wy, Wy G Wy, W]

From equation (2.5),

2
(o)
p_ ) pl
% =2(0y tpl)_axj (2.23)
and from equations 2.17-2.19,
2
20 2
—pl =0y (1- o 1)
a(pl (2.24)
2
00
bl 1 2 2
—5 =% 0n(1-0y)

au, (2.25)
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2

00

pl 1 2
— =0p IDl(10 )
oWy,

2
90 _ 80, 1 805

wllo (1- o ) oo, (1- o 1)
a(pi aopl atp% o e
2
005 60 60p2
w1201(1 ol)op2(1 opz)
o0, aopzaqé

o0 ao R
- = =up pl(l 0, )i O (1-0)
Oy a°p1 awll

ao2 ao ao 5
=Wy Iol(1 o )|D2 Iol(1 o 1)

aulz aomam]2
ao2 ao 30,
p2 2 .1 1
=Wy O ( )lp1 Op(1-0p)
aw21 aopzaw21
awzz aopzam22

Using the above equations, the elements of —E, and using equation (2.4) the

elements of — E are found.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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Chapter 3

Gradient-Based Minimization Algorithms

20



This Chapter describes a set of gradient based minimization techniques which
require the evaluation of the objective function, its gradient and sometimes the matrix
of its second partial derivatives (Hessian) for certain states. Another group of
minimization techniques are described in chapter 4 which require evaluations of the
objective function only. In the latter methods, no direct gradient evaluations are

needed.

3.1. The Steepest Descent Technique

The steepest descent technique is a gradient-minimization method which uses a
first order approximation to the objective function (E) to generate directions of
descent with the knowledge of the gradient at each iteration k. The steepest descent
method is very reliable since it always provides a descent direction. This technique is
ideal for points which are far away from the local minima. However, close to the
local minima, the steepest descent technique will generally require lots of iterations to
converge due to its nature of approximating the objective function with a linear

function.

Let x* denote the state vector which results in a minimum objective function E.

Further, assume that the current state is x, and define Ax, to be the difference between
the states at k and k+1 iterations, namely,

B =X % (1) 3.1)

Decompose the step Ax, into a direction s, and a magnitude A,

B =S, ) (3.2)

Since the gradient of E points in the ascent direction, the steepest descent is given by
the direction opposite to the gradient direction at every step k. Therefore for steepest

descent minimization,

21



%
S =" (19
ol &
However, a line search should be used to provide an optimum step size A, to

minimize E in the s, direction. This will produce the following recursive steepest

descent technique for minimization of the sum of squares of errors of the output of a

neural network.
* %

Xk+1=Xk')‘km ) (3.4)

The steepest descent technique of equation (3.4) is different from the Back-
Propagation!!] technique in the sense that it uses the true gradient of E at step k and
not an approximation. The Back-Propagation technique finds a descent direction
based on an approximation to the gradient of the objective function by using only
local data in a multi-layer network. Furthermore, the early implementations of the

Back-Propagation technique took steps based on the gradient of E, for each pattern p

as soon as a new pattern was presented. The true steepest descent is done, however,
by summing the gradients —E, over all the P patterns and taking a final step in the
direction opposite to the gradient of E, —E. The steepest descent method only
provides good minimizing directions if the condition number of the Hessian of the
objective function is close to 1. As this condition number gets larger, the steepest
descent becomes slower and more advanced minimization techniques (preferably with
quadratic convergence) will be preferred. To further enhance the speed of learning of

the network, let us consider the following more advanced minimization techniques.

3.2. Newton's Minimization Technique

Write the Taylor series expansion of E at x* and about x, assuming that every

update of the state vector should drive the state vector to optimal value x*, namely, x”*

=X + Axk.

22



23

* T 1 T_2 3
E(x )=E(x/])+VE I&Axk+§Axk V. E I&Axk+O(Axk)

(3.5)

By using the previously defined symbols for the first and second gradients of E (g and

G,) with a subscript k to denote their evaluation at x,, we may write (3.5) as,

* T 1, T 3
E(x )=E(x)+g, Axk+§Axk G Ax, +0O (Ax) (3.6)

If we disregard the higher than second order terms in (3.6) and thus approximate E

with a quadratic function in the vicinity of x, and x*, then the quadratic
approximation of (3.6) may be written as follows:
* T 1 T

E (X ) =E (%) + A +5 B G, 3.7)

Note that for a minimum of E(x"), a necessary condition is that —.«E be zero.
However, keeping the current state x, constant and then taking the gradients of both
sides of (3.7), since x" = x, + Axy,

VX* E~g +GAX, (24) (3.8)

Setting the gradient of E at x* equal to zero gives,

g +6 Ax =0 (29) (3.9)

or,
Ax, =- G;(lgk (%) (3.10)
However, since E is generally not a quadratic function in x,, the following recursive
update could be used for the state vector,
a4 @ G.11)
where ), is the optimum step size in the direction s,, and s, is given by the

following,



-1
_ G
1
|G, ol (3.12)

A line search method could be used to provide A, for direction s,.

This method provides quadratic convergence and is very efficient in the vicinity
of the minima. However, there are three problems that are faced when trying to use
this algorithm. The first problem is that in order for E to always descend in value, the
matrix G'! should be positive definite. Since E is generally not quadratic, G could
become indefinite or even negative definite. There are many techniques developed to
keep a positive definite approximation of the inverse Hessian matrix (G!) such that
the quadratic information in the Hessian matrix will be used. Using the quadratic
information generally provides a better direction of descent than the steepest descent
direction, especially in the vicinity of the minima. Among the methods for keeping a
positive definite approximation of the inverse Hessian matrix are Greenstadt's
method!16], Marquardt!!7], Levenbergl18], and Goldfeld, Quandt and Tratter's

alternativel19],

A second problem is that for networks with a small number of neurons it might
be feasible to find the Hessian matrix, however, for larger networks it will become a
very difficult task. In addition, it will be very hard to write general equations for the
evaluation of the elements of the Hessian matrix as done for the elements of the

gradient vector g.

Let us for the sake of argument say that a Hessian matrix is calculated at every
iteration k. Then a still more serious problem occurs. For huge networks it is not

practical to take the inverse of the Hessian matrix. Taking this inverse in most cases

24



will require more time than taking more steps using a simpler method such as the

steepest descent method.

The problem of retainment of positive definiteness of the inverse Hessian can be
solved by the methods noted above. However, problems two and three make using
Newton's method quite impractical. These limitations are reasons for looking at the
following alternatives which in turn will solve the aforementioned problems and still

keep a super-linear rate of convergence.

3.3. Quasi-Newton or Large Step Gradient Techniques
From equation (3.11), we can write the following generalized recursive

algorithm to update the state vector such that a minimum E will be approached:

Xk+1=Xk')‘EHkvxE(k) (29) (3.13)

where 1" is a weighting factor, and H, is a square symmetric matrix. Depending on
the choice of H, , different optimization algorithms will be resulted. Therefore, Hy
multiplied by the gradient of E will provide a direction of descent in the objective
function E and )", is the optimal step in that descent direction as provided by some
line search method. If Hy in equation (3.13) is made equivalent to the identity (I)
matrix, then the method reduces to the steepest descent technique which provides
linear convergence. Making H, equivalent to the inverse of the Hessian matrix (G™!)
of the quadratic approximation of E, as previously defined, the method will reduce to

the Newton minimization technique which provides quadratic convergence.

Instead of using the real inverse-Hessian, Quasi-Newton methods use an
approximation to the inverse-Hessian provided by an iterative updating scheme.

Quasi-Newton methods usually start with an approximation to the inverse-Hessian

25



matrix such as the identity matrix. Different updates for H, are then used, leading to

different types of Quasi-Newton methods. Updates to matrix H, are done recursively

in different directions of the inverse-Hessian space, based on the information obtained
from the function and gradient behavior in that direction. Depending on whether
these updates are done in one or two directions at a time, rank one or rank two
methods are generated. Those Quasi-Newton methods which retain a positive definite
H, are called variable metric methods. Not all Quasi-Newton methods use variable
metric updates. Newton-like methods in general try to keep Newton's condition

(3.14) satisfied.

H A, =1, (2% (3.14)

Condition (3.14) is automatically satisfied for a quadratic function if H is the exact
inverse Hessian. However, since in Quasi-Newton methods, the inverse Hessian is

supposed to be approximated, instead of H, Ag, = Ax,, the methods try to keep the

following relation satisfied at each step k,

Hya A9 =% (2%) (3.15)

This relationship is referred to as the Quasi-Newton condition and it means that the

inverse Hessian matrix should be updated such that relation (3.15) is satisfied.

In 1959, Davidon!29] introduced the idea of Quasi-Newton methods. In 1965,
Barnes!2!] and Broyden!22! independently introduced a method for solving a set of
simultaneous linear equations of the same form as equation (3.14). Barnes' equation
is a more general one and includes Broyden's method as a special case. Equation

(3.16) gives this update,
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:
" =(Axk'HkAgk)Zk

K (30)

by (3.16)

where z,_is a direction in which the update to H, is done.

3.3.1. Rank-One Updates to Inverse Hessian

A rank-one update to the inverse Hessian matrix H; would mean the following,
Hy =H +auu
where u is a direction of update. Setting z, in equation (3.16) equal to the error of
equation (3.14), when H is approximated by H,, will produce Broyden's rank-one
update (Eq. 3.17).

.
! (- Ag ) (M- HAg,)

k (31)

(AXk'HkAgk)TAgk (3.17)

This update as applied to Quasi-Newton problems was introduced by Broyden!23],

Davidon[2#! and others[25: 261 independently. Let N denote the dimension of the state

vector x. This update has the property that if Ax,, Ax,, .., Axy are linearly

independent, then at k=N+1, H, = G™! for quadratic functions.

Another important feature of Broyden's update is that %, of equation (3.13)
does not necessarily have to minimize E in the s, direction. As long as A, is such
that H,,, will not become singular and the denominator of (3.17) is not made zero,

any 2, could be used in conjunction with the Broyden update. However, some
unattractive features also exist for this update. If the objective function is non-
quadratic, as in the case of general neural networks, the following less than

satisfactory aspects of Broyden update exist,
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1. Hy may not retain its positive definiteness in which case it is necessary to use

one of the methods in section 3.2, such as Greenstadt's method, to force this matrix to

be positive definite.

2. The correction AH, of equation (3.17) may sometimes become unbounded

(sometimes even for quadratic functions, due to round-off errors).

3. If Ax, given by equation (3.13) is by chance in the same direction as Ax, _;,

then H, _; becomes singular or undetermined. Therefore, if

Hi A =0 (3.18)
or,
)
= 2 B ® (3.19)
By, dg,

then H, ,, should be made equal to H,, namely AH, = 0.

3.3.2. Pearson's Updates

Pearson!27] introduced other directions of update for the projection of the error

of equation (3.14). In his No.2 method he proposed z, = Ax; in equation (3.16),

which in turn generated the following update for H, :

T
(gl

, @

Mg (3.20)

His No.3 method used the other possibility which is z, = H, Ag,. This gives the

following update,



.
-H H

MCSETIEY 5
(HAg) g (3.21)

Pearson's methods do not guarantee positive definiteness of the inverse Hessian
Matrix and usually lead to ill-conditioned matrices. Therefore, it is a good idea to

reset the inverse Hessian approximation to Identity, every N iterations (i.e. Hy) =1

fort=0,1,2,..).

3.3.3. Rank-Two Updates

The rank-one update does not leave much of a freedom for choosing the
directions of update. This motivated the formulation of rank-two updates such that
the objective is still to satisfy relation (3.15) at every step k. The general rank two

updates are of the following form,

T T
Hey =H tauu +Bvv (34) (3.22)

where, the directions u and v and scaling factors a and 3 should be picked. It would

be a good idea to update these directions relative to Ax, and H, Ag,. This would give

the following general update,
Mf HMJ
k k
+B - (39)
y Ag( 7 Agk (3.23)

I, =a
A natural choice to retain symmetry is to pick a. = 1, = -1, y = Ax,, and z = H,_ Ag,.
This will generate the Davidon-Fletcher-Powell (DFP)[28] update given by equation

(3.24).

T T T
Dy Hlgh gH,

T TT
Ax Ag,  Ag, H, Ag, (3.24)
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This algorithm works properly in general if g, is calculated with minimal error and Hy

does not become ill-conditioned. Define,

T
A =ﬂ (37)
I Mg (3.25)
and,
H. Ag Ay TH
: +Tgi_' ®
Then,
k-1
2 A-H & k- N 3.27)
and,
k-1
Z—oBi_) H, & k-N (3.28)
which result in,
H-H & k-N (3.29)
for a quadratic function. The proof of this statement is as follows.
Using (3.14), substitute for Ag; in equation (3.25),
T
AXi AXi
Am
Axi G Axi (3.30)

Sum A; over N consecutive steps,

=YK = YL (3.31)



- hss A s

ZAi_ T T )

"= A5 Gsh o 5 Gy (3.32)
Therefore, for quadratic functions when s, are conjugate about G (see (A.38)),

N-1

;Ai:H o) (3.33)

The DFP method provides s; which are conjugate about G and thus (3.33) holds.
Similarly, XB; can be shown to approach H, and to keep H, positive definite as k &
N. An important property of this update is that if Aka Ag, > 0 for all k, then the
approximate inverse Hessian matrix will retain its positive definiteness. This
condition can be imposed by using a line search method which satisfies the following

relation,

9I+1Axk2°ngxk (@) (3.34)

Eventually this means that the curvature estimate should be positive where the
updating is done. In equation (3.34),

o€t 1]
and,

1
TE[O,E]

These are parameters of the line search termination.[28]

In 1970, Broyden!(29], Fletcher!30], Goldfarb[3!], and Shannol32! suggested the
BFGS update which is dual with the DFP update. This means that if one applies the

DFP method to updating the Hessian matrix from the following,
Gyg A =L, @) (3.35)
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rather than equation (3.15), and then apply the Sherman-Morrison inversion formula

(A.32) to obtain an expression for AH,, then the BFGS formula given by equation

(3.36) will be obtained.

(43)

T T T T

A g H Ag \ Ax A Ax, A g H, +H, Ag Ax

AHk=(1+ k M k) _l)_(kxk B ka kA% A%
A x Ag A x Ag A x Ag,

(3.36)

The BFGS update has all the qualities of the DFP method plus the fact that it has been
noted to work exceptionally well with inexact line searches and a global convergence
proof exists!?8] for the BFGS update. No such proof has been done for the

convergence of DFP yet.

3.3.4. Quasi-Newton Updates Through Variational Means
Greenstadt[33] developed a general updating scheme using variational means by
minimizing the Euclidian norm of the update to the inverse Hessian. This generated

the following general updating formula,

1 T T T
AHk=_|_— (A% Ag, M +M Ag, Ax, - H, Ag, Ag, H,
Ag, M Ag,
1 T T T
'T—(Agk Ax - (Ag, H Ag, ) ) M Ag Ag M) (44)
Ag, M Ag,

(3.37)

where M is a positive definite matrix. Greenstadt in his paper proposed two
possibilities for M as,

1.M=H, <& (Equation 3.38)

2.M=1 & (Equation 3.39)
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1 T T Ag, Bx
Ag, Hy Agy Ag, HyAg,
T
H,Ag Ag, H ) (45) (3.38)
1 T T T

Ag, Ag,

1 T T T

~—— (89 - Ag HAg,) Mg Ag, ) (46)

These methods do not retain positive definiteness in general. However, Goldfarb[31]

proposed the use of M = H,, ; which does provide a positive definite approximation to

the inverse Hessian matrix. This method is identical to the BFGS update.

3.3.5. Self-Scaling Quasi-Newton Methods
Suppose that the objective function E is scaled by a number ¢ and results in a

new objective function,
E = (47) (3.40)

This objective function has the same minimizer as E and its gradient and inverse

Hessian are given in terms of those of E by,

J=q (49) (3.41)

H' =(% JH (49) (3.42)

The Newton step for finding the minimizer of a quadratic function, x”, is x" = x, - H

g,- Similarly, the Newton update for E'is,

* v 1
X =x.-H gk=xk-(E)Hcgk=xk-Hgk

33



Therefore, the Newton step is invariant under scaling while Quasi-Newton methods

are generally not invariant under such scaling and will give different results.

Take Broyden's single parameter class of updates described by equations (3.43),

which includes the BFGS and DFP updates as special cases.

TT T
H\ Ag Ag, Hy T Dy

Ag, H, Ag, D, Ag, (3.43a)
where,
T 7 IX H, A
v =(4g H Ag,)"( Tk - Tk gk ) (500)
Ax Ag, Ag, H, Ag, (3.43b)

(Setting @ to 1 in equation (3.43a) produces the BFGS update and setting it to zero

gives the DFP update.)

This class of updates is generally not invariant under scaling. This motivated
Oren and Spedicatol34:35] to modify this Broyden's single parameter family (3.43) by
introducing a new parameter p, such that by the appropriate choice of p, and g,
they could have an update which is invariant under scaling of equation (3.40). This is

the general update given by (3.44),

T T
H Ag Ag H T DA

Ao Hy Age B Dg, (344

where v, is given by (3.43b).

In addition, Shanno and Phual30! proposed an initial scaling method which

makes Broyden's single parameter class of update self-scaling. The two approaches
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to making updates invariant under scaling are discussed in more detail in the

following two sections.

3.3.5.1. Self-Scaling Variable Metric (SSVM) Algorithms
Equation (3.44), when used with exact line searches, will become a member of

Huang's family[37] where in his notation,

n

0= (52)

1
i) (3.45)

Equation (3.44) leaves a lot of freedom in choosing the parameters p, and g, such

that invariance under scaling is achieved. Oren suggested in [34] that n, and g, be

picked in the following manner,

T
% Mx, Ag,
hegoT—— +1-9) 53
and ¢, 9, CE[0,11. This choice will provide a set of i, such that,
B ne
k B9 < <Axk k 54
T TRTT
Ag, H, Ag, D, Ag, (3.47)

In another approach, Oren and Spedicato[33! tried picking u, and g, based on
heuristics such that p, is as close as possible to unity and g, is such as to offset an
estimated bias in det ( Hy G ). In a third approach Oren and Spedicato[33! picked

those p, and g, which minimize the condition number of ( Hk‘1 H,,, ). This choice

will put a bound on the condition number of the inverse Hessian approximate and

therefore will provide numerical stability. Minimizing this condition number, the

following relationship is held between i, and g,,
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b(c-by)
) 2 A (3.482)
W (a-b)
where,
T
a=Ag H,Ag, (55b) (3.48b)
T
b=Ax, Ag, (% (3.48¢c)
and,
T 1
c=Ix H, b
0 T
=)\kzgk H, 9 (55d) (3.48d)

Then, using Fletcher's duality concept!28], Oren and Spedicato!33! found those p1, and

0y Which would make their update self-dual. This set is given by,

6= 1—| (569 (3.49a)
14 &
J 3
and,
L= J ; (560) (3.49b)

Reference [35] gives four sets of switching rules for picking p, and @,.

Algorithms based on Oren and Spedicato's updates are called Self Scaling Variable
Metric (SSVM) algorithms. SSVM methods maintain positive definiteness of the
approximation to the inverse Hessian matrix provided that AkaAgk > (0 for all k.
Condition (3.34) is again used in the line searches to impose this inequality. For a
general non-linear objective function, the SSVM algorithms provide a set of search
directions which are invariant under scaling of the objective function. Also, for a
quadratic function, these algorithms have the property that they monotonically reduce

the condition number of the inverse Hessian approximate.
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A draw-back of the SSVM algorithms is that they fail to converge to the inverse
Hessian matrix for a quadratic function.[30] This convergence is especially desirable

for methods employed for minimizing non-quadratic objective functions.[38!

The SSVM algorithms, in general, perform well with objective functions which
depend on lots of variables. This makes them ideal for usage in neural network
learning. These algorithms perform exceptionally well (better than all other updates
in general) for homogeneous objective functions. A homogeneous objective function
E(x) is such that,

E(x) =T (x-X ) g +E(X ) 5 (3.50)

where 1 is the degree of homogeneity and x* is the minimizing state.[39]

Differentiating (3.50) gives,
X =x-(t-DHi g 5 (3.51)

Equation (3.51) suggests that the Newton step should be multiplied by (t - 1) in order
to get to the minimum. This makes the switch 2 SSVM methods superior to all other

Quasi-Newton methods, when used on homogeneous functions, [34-36]

The lack of convergence of the approximate inverse Hessian to its true value in
SSVM updates motivated Shanno and Phua to investigate methods which would make

the Broyden single parameter class self-scaling.[36]

3.3.5.2. Initial Scaling of the Inverse Hessian Approximate

In [40], Spedicato proposes the initialization such that H is the inverse of a

diagonal matrix with its diagonal being the diagonal of the true Hessian matrix at x,,.

This, however, is not practical since it is very hard to evaluate the Hessian for the
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objective function of a multi-layer neural network. Shanno and Phua [3¢] proposed an

initial scaling such that,

Hy=hoH, ) (3.52)

where A" is the initial linear step given by the line search algorithm and H'; is the

initial guess for the inverse Hessian (usually the identity matrix, I). This makes
Broyden's one parameter class of updates, given by equations (3.43), self scaling and
invariant under scaling of the objective function. Initial scaling of (3.52) will

therefore give,

=), (60 (3.53)

as the new initial guess for the inverse Hessian, if no better estimate of H is available.

Another initial scaling, proposed by Shanno and Phual36], uses Oren-Spedicato's

SSVM algorithm and finds the p, provided by that algorithm which minimizes the
condition number of ( Hk'1 H,,, ). Then it scales the initial estimate of the inverse

Hessian by that value. For example, consider the BFGS update for which g, =1. p,
is given by equation (3.48a) to be,

u0: (61) (3.54)

Since p should be equal to one for the BFGS method, the initial estimate of H is

scaled by p,

H0=2H'0 ) (3.55)

This initial scaling can be evaluated in the same manner for all the members of the

Broyden single parameter class of updates using (3.48a) and the appropriate g, for

that update.
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These initial scalings were shown by Shanno and Phua [30] to improve the
performance of the BFGS method over the SSVM methods of Oren and Spedicato in

all the cases tested but the special case of homogeneous objective functions.

3.3.6. Quasi-Newton Methods with Inexact Line Searches

Quasi-Newton methods which work well with inexact line searches such as the
BFGS and SSVM methods have become very popular due to their reduction of the
computational burden associated with line searches. Hoshinol4!! presented, with his
Quasi-Newton algorithm, a correction term which would maintain the orthogonality

of the search direction and gradient at the termination point of an inexact line search.

Davidon also presented a new algorithm which has drawn a lot of attention in
the field of optimization!36-42] | His algorithm uses no line searches, optimally
conditions the inverse Hessian approximate, and uses the square root of the inverse
Hessian approximate which improves the numerical stability of his algorithm. The
following two sections describe the theoretical details of these two approaches to

weaken or eliminate line searches.

3.3.6.1. Hoshino's Method

Hoshinol4!] presented a new variable metric update which generally works well
and has properties similar to those of the BFGS and the DFP methods. However, this
method in general has shown to give updates with condition numbers larger than the

BFGS and SSVM methods. Hoshino's update is given by equation (3.56).
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-

1 219, H,Ag, T

He =H+— - ([1+T—]AXkAXk
Ag Ax +Ag, H, Ag, Ag, Ax,

T T T

An attractive feature of Hoshino's Quasi-Newton minimization is his theoretical
approach to the use of his update with inexact line searches. Inexact line searches are
desired to reduce the number of function evaluations. These inexact line searches will
sometimes give gradients at their termination point which are not perpendicular to the
search direction. This will slow down the convergence of the minimization scheme.
To evaluate the Quasi-Newton direction of update at any step k+1, Hoshino uses a

modified gradient which is forced to be perpendicular to the search direction.

Consider the line search terminating at x,.,. Also, consider x', ., to be the true
minimum in the direction of search. Furthermore, denote the step from x, to the true
minimum X', ; by Ax', and define the scalar ¢, such that,

AX | =g DX (3.57)

Therefore, the gradient at the true minimum g', ; will be given by,

1 =% (G- 9) &
=01 T& A (3.58)

The true minimum would be at the point where the gradient is perpendicular to the

direction of search or,

T
A% 9449 =0 (3.59)

Solving for the &, which satisfies this condition gives,

T

Ek =- %
T

Ax, Ag, (3.60)



Then, the expression for the modified gradient is given using this scalar factor by,

.
— DX G
Y1 =% —F Agy,
Ax, Ag, 3.61)

This new gradient gives the Quasi-Newton direction at step k+1 to be,
S =" Hia T (3.62)

Hoshino does not use this modified gradient for his update to the inverse Hessian
approximate. This gradient is only used to obtain the Quasi-Newton step. Reference

[41] gives a stability analysis for this scheme.

3.3.6.2. Davidon's Optimally Conditioned Quasi-Newton Method with No Line
Searches

In 1975, Davidon[2] made an important contribution to the improvement of
Quasi-Newton methods by introducing his optimally conditioned method which is
free of line searches. Schnabell43] has devoted most of his PhD dissertation to
evaluating Davidon's method. The method conducts updates to the inverse Hessian
approximate which are optimally conditioned in the same sense as the optimal

conditioning of Oren and Spedicato. This conditioning is done by minimizing the

condition number of ( H,"! H,,, ) which has been obtained by minimizing,

A
1 . .
— inthedgenvdueproblem H, ;u=AH_ u
)\N
Previously, researchers had been trying to minimize the ratio of the condition number
H, ,, to the condition number of H,. However, doing this would generate invariance
under orthogonal transformations only, while the optimal conditioning used by

Davidon and Oren and Spedicato is invariant under all invertible linear

transformations.
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Davidon's update to the inverse Hessian approximate is given by equation

(3.63). This general update includes some updates such as the DFP and BFGS
updates as special cases. In equation (3.63), the value of @i is chosen such that the

condition number of ( Hk‘1 H,,, ) is minimized. Davidon uses Ax as the initial value

of w, namely,

Wo =%,
Following w's are then obtained by (3.64) for quadratic functions. For non-quadratic

functions, he sometimes uses,

W, =Ax,

This update is part of Davidon's algorithm which does not use a line search.
However, if sufficient reduction is not experienced by the objective function, a simple

inexact line search is used to impose sufficient function reduction.

T T T T
(A% -H Ag ) W +w (Ax - H Ag ) (A -H Ag ) Ag, w, W,

Hea=H t T —
WkAXk (Wk Agk)
. T
Mx, - Hy Ag Wi Mx - H Ag, Wi
6 T 7 T 7T
K| (A -HAg) Ag w, Ag || (Ax-H Ag) Ag w, Ag (3.63)
! ! 3.64
Wi =W, (A% -H Ag, ) Ag,- (A% - H, Ag ) w Ag (65) (3.64)

This method has three important features. First, to improve the numerical
stability and accuracy of his algorithm, Davidon updates a Jacobian matrix which is

the square root of the inverse Hessian approximate.

H, =] kJI (3.65)



By this factorization, the condition number of the Jacobian matrix J, is of the order of

the square root of the condition number of the matrix H,. This smaller condition

number improves the stability of the method in practical applications. An update in

the Jacobian matrix of the following form,

Jk+1=(1+UVT)Jk (3.66)

translates to the following update in the inverse Hessian approximate,

T T
Hez=(1+w )H (1+w ) (3.67)

This factorization produces positive definite inverse Hessian approximates. Some
rank two updates in the Broyden family such as BFGS, DFP and optimally
conditioned updates correspond to rank one updates in the Jacobian matrix. This

results in fewer computational operations and less round-off error.

A second feature of this algorithm is motivated by the fact that one could
approximate the gradient at the minimum of a quadratic function by a linear
interpolation similar to the approach of Hoshino discussed in the previous section.[#4]
Davidon does not use the actual change in the gradient and the actual step size, he
instead uses projections of these changes. This allows him to avoid line searches.
Shanno and Phua have devoted a paper to the discussion of these projections. 4]
Despite the use of these projections, Davidon's method still maintains a positive
definite approximation to the inverse Hessian matrix for quadratic and non-quadratic

functions. This ensures quadratic convergence for Davidon's algorithm.

In the real implementation of his algorithm, Davidon uses an equivalent form of

equation (3.63) given by equation (3.68),
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T T
(AX'k-HkAg'k)AX'k +AX'k(AX'k-HkAg'k)
Hia =Hi +

IT 1
A\ Ay

1 1 T 1 1 |T
(X -H AGy ) AGH AX AX

T 2
(AX' Ag'y)
o T
. X, H A, X, H A,
el Agl H Agl IT 1 - IT 1] IT 1 ) IT 1
CTOTH M) Dgy 0gy HAG || A Ay G\ HAgy [ (3.68)
where,
Ax'y =Q Ax, (3.69)
and,
-
Ad', =Q, Ag, (3.70)

Qy 1s the matrix projecting onto
- -

in Hk'l.

The third feature of Davidon's algorithm is that the directions w of (3.63) need
not be orthogonal to the error of the Quasi-Newton step. These directions are chosen

such that the updates and new directions satisfy the following conditions:

( Hk+1_ Hk)Z=0 A4 ZEZH
w 1Z, 1Ax -H, Ag, (3.71)

where,

Z, =[ Ay, ..., Agk_l] (3.72)



This ensures approximate inverse Hessian matrices which satisfy the following

condition,

Hyiq AG =X j=k (3.73)

This condition ensures convergence to the minimum of a quadratic function after N
updates to the inverse Hessian approximate when inexact line searches (or even no

line searches ) are used.

Figures 3.1 give a flow chart of Davidon's minimization algorithm without any
line searches. Davidon's update, when no projections are used and the inverse
Hessian approximate is updated directly, can be described by equations (3.43), (3.48),

and

0=b(c-b)/(ac-b’) when b =2ad(a+q) (3.74a)

8 =b/(b-a) when b>2ac/(a+c) (3.74b)

Davidon's update can also be used in accordance with the scaling of the initial guess
for the inverse Hessian to make the update invariant under scaling of the objective
function. The first method of initial scaling discussed in 3.3.5.2, has produced much

improvement on the scheme.[36]

45



No

Yes Eq

-
<

figure 3.1a (Flowchart of Davidon's Quasi-Newton Method)



@ ’Vﬁ A

‘ Eva uate g(x) ‘

No s=As

Eo =A Eg

\/ Nn =Nx1 Null vector

Yes —0
v
T
h_uu s
T
u u
2
n2_(u s)
u u
v v

figure 3.1b (Flowchart of Davidon's Quasi-Newton Method)

47



Yes mv
n=s- (M}
m
2
n° =by- (1Y)
m
b =b,
v v
v
No / —
| MV <M N
v \
Y=0 1 Yes|
1 w
2
—(
A= IJ) a=b-pn
c=b +v
1
1-_MHV
2 2
_ m n
Y= _ ab
C
A= 3
v
No
c=a I
v v

- Y
> -

<
a =vV+HuHA +m2 n2y
p=m(A - nzy) +nNnvyv
_m(1+n’y) Ny
x [od

q

w=mn2(1+VUV)-n(1+A)“V
fo fo

-
'<o=ko+qu Ko
) =) +Jap

figure 3.1c (Flowchart of Davidon's Quasi-Newton Method)



3.4. Conjugate Gradient Methods

Consider a quadratic function E(x), x CE RN,

T 1T
Efx)=a+h x+%x GX whereG is postvecinteand hes full rak N

where G is positive definite and has full rank N.

Take a normalized starting direction s, CE RN such that Il s Il = 1 and an initial

vector X,,. Find the step size 1*, such that,

*
X) =Xg +AgSg

minimizes E along the direction s,.

Then,

T * * T *
E () =a+b’ (X +AgS) +5 (g +Aosy) G (X +AgSy)

To find the minimum of E in the s direction,

9E

oA,

0

or,

T T
V Elg) syt G gy =0 (64)

Solving for 1", from (3.79),

T
)\O=_T—
So G sy

If a unidirectional minimization is done for N times in N directions s,, k G { 0, 1, ...,

N-1 } which are mutually conjugate about G, the Hessian (matrix of second partial

derivatives) of E, then,

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

49



XN =X +ZO)‘|< Sk

i lsk VE(x,)
=Xo- ZoT—Sk
— G5

However,

VE(x) =G x +b

For simplification, define,

9 =V, E(x)

then,

T T
Se 9 =S¢ (ka+b)

x0+20)\ s)+b)

Il
A

—

The expression for xy can be written as,

L3 (611l
XN:XO-ZOT—
= 505

By theorem A.1,

_“'151Gxosk
XO_ZO T

565

Substituting (3.86) into (3.85),

T
=5 (GXx,+b) sinces, Gs =0fordl i<k dueto conjugacy

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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T
N-1
N 508
N T—
—5. G5
T
N-1
b
_ S;Sk_ (67
= Sk G sk (3.87)
However, from theorem A.2,
T
N-1
g 23
s Gy
which after substitution in (3.87) will give,
K= b &) (3.88)

Equation (3.88) is equivalent to the Newton step which minimizes a quadratic
function. Therefore, xy is the minimizer of E. This shows that the minimum of a
quadratic function can be reached in at most N linear minimizations if these
minimizations are done along a full set of directions mutually conjugate about the
Hessian matrix of the objective function. In general, the method of conjugate
directions provides quadratic convergence. A few different conjugate direction

methods are discussed in the following sections.

3.4.1. Fletcher-Reeves Conjugate Gradient Method

The Fletcher-Reeves!40] conjugate gradient method generates a set of search

directions s;, i E { 0, 1, ..., N-1 } such that s, is a linear combination of g, and all Sjs ]
E {0, 1, ..., k-1 } with the combination weights picked such that s, is conjugate

about the Hessian matrix G of a quadratic objective function to all Sis JAE{O,1, ..,k

1 }. These weights (coefficients) are chosen such that only the two most recent
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gradients are needed for their evaluation at each iteration. This solution was reached

by influences from Hestenes and Stiefell47] and Beckman!48! as noted in [46].

Reference [46] provides a method for finding conjugate directions based on the
two most recent gradients. Here a derivation is given for the calculation of these
directions, leading to the method of conjugate gradients due to Fletcher and

Reeves[40],

Write the direction at iteration k+1, sy, such that sy, ; is a linear combination
of the gradient g, and direction sy,

S G s,y =0 (3.89)

where wy is a weight to be chosen. Doing this for all k, si,; becomes a linear

combination of gy, ands,, i (E {0, 1, ...,k }.

In (3.89) wy should be chosen such that sy, | is conjugate to s about the Hessian

matrix G of the objective function E(x), or,

T
S¢ G Sy =0 (3.90)
From (3.2),
T
o =
)\i (3.91)

and from (3.91), (3.18) and the definition of H (i.e. H=G!),

T -1
;(Ii (3.92)
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Substituting (3.92) and (3.89) into (3.90),

(3.93)
or,

(3.94)
and for any arbitrary 1",

(3.95)

Write out all the terms in (3.95) using the definition of Agy,
(3.96)

The L*'s are chosen such that they minimize E(x) in direction s;. Writing (3.79)

using (3.82) and (3.83),
(3.97)

Using (3.2) in (3.97) and factoring out skT,
(3.98)

or,

(3.99)

However, from (3.82),
(3.100)

Substituting (3.100) into (3.99),
(3.101)

Writing (3.82) for any iteration /,
(3.102)

The transition from xj to x; using the argument in the previous section is given by,
(3.103)
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Substituting (3.103) into (3.102),
(3.104)

or,

(3.105)

Multiply (3.105) from the left by s;_; T,
(3.106)

For conjugate directions and using (3.101) in (3.106),

(3.107)

and combining (3.101) and (3.107),
(3.108)

Substituting for s in (3.101) using (3.89),
(3.109)

or,

(3.110)

Using (3.108) in (3.110),

Substituting for sy from (3.89) in (3.96),
(3.112)

Using (3.108) and (3.111) in (3.112),
(3.113)

Solving for oy from (3.113),
(3.114)

Substituting for wy from (3.114) into (3.89),
(3.115)

(3.111)
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Using (3.115), the Fletcher-Reeves conjugate gradient method could be

summarized by the following steps:

3.4.2. Partan's Iterative Conjugate Gradient Method

Partan's minimization method[*®! is another popular conjugate gradient
minimization technique which has been used in developing many commercial
minimization software packages. The Iterative Partan method is described by the

following procedure.

1. Sets,=-g, atinitial point x,
2. Find A*, such that x; = x, + 1", s, minimizes E along the direction s,
3. Sets;=-g,

4. Find A*| such that x, = x; + A*; s; minimizes E along the direction s,

6. Find 1™, such that x; = x, + 1*, s, minimizes E along the direction s,
7. If the termination criteria for the minimization are not met then set x,,

= X5 and goto step 1, Else, terminate minimization.

In practice the iterative method is not as effective as the following variation which is

called the Continuous Partan method.
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3.4.3. Continuous Partan Minimization Method
The Continuous Partan method!>%] has added a few extra steps to the iterative
Partan method which enhance the performance of the method in practice. These steps

are as follows,

1. Do steps 1 through 6 of the iterative Partan method
2. Sets;=-g;
3. Find A*; such that x, = x5 + L5 s; minimizes E along the direction s,

5. Find A* such that x5 = x, + 1*; s, minimizes E along the direction s,

6. If the termination criteria for the minimization are not met then set

X3= X5 and goto step 2, Else, terminate minimization.

3.4.4. The Projected Newton Algorithm
Zoutendijk[>!! presented a gradient projection method which is summarized by

the following steps:

1. Let Py = I and start from the initial state X.

3. If P g =0 let s =- P g
4. Minimize E(x) in direction sy
5. If Py g = 0 and gi = 0 then terminate
6. If (P gx =0and g # 0 ) or k=N, then k=0, xy=xy and goto step 1
7. k=k+1, goto step 2
For a derivation of the projection matrix of step 2 see reference [52]. The above

procedure is equivalent to a Quasi-Newton approach with the initial inverse-Hessian

approximation picked as Hy=I and then updated by equation (3.116).
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(3.116)

This update is equivalent to the method of Projected Newton-Raphson given by

Pearson.[27]
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Chapter 4

Minimization Techniques Requiring No Gradient Evaluations
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All the minimization methods listed in the previous chapters required evaluation
of the first gradient vector. In neural network learning, this requirement brings about
the need for knowing the exact structure of the network and all of the connections.
For large networks, it is very difficult to analytically evaluate these gradients. To
evaluate the gradient of the objective function with respect to weights and activation
function parameters in the lower (close to input) layers, chain rule requires many
derivative evaluations. This difficulty becomes more serious when the number of
layers grows. On the other hand, objective function evaluations can easily be
performed by the neural network while gradient evaluations cannot be by the network
alone, in general. This is the main motivation behind the use of optimization methods
which require no gradient evaluations. The objective is to minimize the need for extra
hardware/software for gradient evaluations and to have the neural network circuit
perform most of the computations. A special advantage of gradient-free methods is

that they do not require regularity and continuity of the objective function.

4.1. Search Methods

The optimization methods which were described in the previous chapters require
analytic evaluation of the gradient of the objective function. In a family of
optimization methods called search methods, the directions of minimization are
evaluated solely based on the objective function values. In general, gradient based
minimization methods converge faster than gradient-free methods. However, when
many variables are involved, as in the case of neural-network learning problems, the
analytical evaluation of the gradient becomes complicated. A popular gradient-free

minimization scheme is discussed by the following.

Hooke-Jeeves and Wood Direct Search Method
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The direct search method as implemented by Hooke-Jeeves[23] and Wood[5#! is
based on exploratory searches in the directions of independent variables one at a time,
while keeping the rest of the variables constant. These methods are known to work
poorly when there are terms in the objective function involving the product of a few
design variables.!8] This makes the direct search method a poor choice for application

to the neural-network learning problem.

4.2. Gradient-Free Conjugate Direction Methods

There are a few methods which use only objective function evaluations to
predict a search direction which is conjugate to one or more directions about the
Hessian of the quadratic approximation to the objective function. Among these
methods are Rosenbrock's method, the Davies-Swann-Campey method ( a modified
version of Rosenbrock's method), Smith's method and Powell's first and second
methods. These gradient-free minimization techniques are discussed in more detail in

the following.

4.2.1. Rosenbrock's Method

Rosenbrock's method[33] starts with a full set of orthonormal directions S;, 1 E {
0, 1, ..., N-1 } which could be the directions corresponding to the N independent
variables of the objective function. It searches along these directions ( i.e. starts out
like the Hooke-Jeeves direct search method) for a sufficient reduction in the objective
function. After completing N searches, it takes the final value of the state x and
subtracts from it the initial value of the state. Let us denote the value of the state

vector after these N searches by x, and its initial value by x,,. Following the previous

nomenclature,
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4.1

Ax, gives the new direction s, upon normalization and then a Gram-Schmidt

orthogonalization process as described in Appendix A is employed to obtain the rest

of the directions s;, i &E {1, 2, .., N-1 } which are made orthonormal to so- The

search through all the new N directions is repeated again and a new direction is found.
These s, directions at every iteration k tend to line up with the principal axes of the
Hessian of the quadratic approximation to the objective function ( eigenvectors of G ).
This makes Rosenbrock's method similar to conjugate direction methods in
convergence properties when applied to the minimization of a quadratic objective

function.

This method has a very serious problem with its applicability to practical
problems such as the neural network learning problem. The search directions
generated by the method could sometimes become zero. In that case, the scheme fails.
Davies, Swann and Campey made a modification to Rosenbrock's method to reduce

the chances of this type of failure.

4.2.2. Davies-Swann-Campey Method

Davies, Swann and Campey presented a variation of the Rosenbrock gradient-
free minimization method which makes it more practical. This method is named after
them and abbreviated to the DSC method[50]. In the DSC method, a gradient-free
linear minimization method is used to find the minimum of the objective function
along the N directions in contrast to Rosenbrock's method that makes a mere
reduction in the objective function. Another modification done to Rosenbrock's

method is a reordering of the directions which allows the retainment of nonzero
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directions separate from the zero directions and minimization is done in those nonzero

directions until termination occurs or all the directions become zero.

4.2.3. Powell's Methods

In most minimization methods, the state vector is updated in a direction (s, )

dictated by the method and a linear search is used to find the optimum step size of the

update in that direction (%,"). This update will be of the following form at every step

of the minimization,

4.2)

The main purpose of the minimization algorithm is to find a sequence of
directions in which to perform the linear searches. If the objective function is
quadratic, then the best set of directions are in general the set which are mutually
conjugate about the Hessian matrix of that function. However, since a gradient-free
minimization scheme is intended, the Hessian matrix and even the first gradients are
not evaluated. This makes the task of finding a mutually conjugate set of directions
very difficult. Powell in [57] states a theorem on conjugacy that helps him develop an
algorithm which tends to line up two consecutive new directions of search with

conjugate directions.

Powelll7] devised two methods, in evolution from Smith's method[>8], which
minimize the objective function E(x) by successive linear searches in directions which
are generated by the methods and tend to become conjugate about the Hessian of the

quadratic approximation to the objective function E.
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These methods are based on two theorems stated by Powelll57! in the following

manner:

Powell's Theorem 1:

"1f q1, 92, ---» qm»> M < n, are mutually conjugate directions, then the minimum of
the quadratic f(x), where x is a general point in the m-dimensional space containing X

and the directions q;, qp, ..., qn, may be found by searching along each of the

directions once only."

Powell's Theorem 2:

" If x¢ is the minimum in a space containing the direction q, and x; is also the

minimum in such a space, then the direction (X - X¢ ) is conjugate to q."

Powell's paper provides the proofs to these theorems. Using these two

theorems, Powell presented his first method given by the following steps.

Powell's first method:
Set s, =¢,.
1. Find A, which minimize E(x;_; + A, s})
and x, = X+ Ay S
k=1,2,3,..,N
2. Replace sy by s, ., for k=1, 2,3, ..., N-1
3. Replace sy by xy - X
4. Find Ay which minimizes E(xq + Ay Sy )

5. Set x( = X + Ay Sy and goto step 1
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This procedure finds points X, ..., X5 Which minimize the quadratic approximate

of the objective function in the sy, ..., sy directions and generates the new direction,
4.3)

This procedure makes up one iteration of Powell's first method.  Through
renumbering, the procedure is repeated for the new directions sy, ..., sy. Powell
claims that after N iterations, the minimum of the quadratic function is reached.
However, this claim has been shown by Zangwill[5°! to be false in general. Zangwill
provides a counter example in [59] for which Powell's method will never converge to
the minimum. This lack of convergence is due to a mistake in the statement of
Powell's first theorem. Powell's methods could sometimes generate linearly
dependent directions which will not span the entire space. To correct for this mistake,
Powell states that sometimes it is not wise to accept any new direction provided by his
method. Zangwill gives a correction for Powell's first theorem which would solve
this problem. He states that in theorem 1, the directions qy, q, ..., m, Mmust be such
that they span the entire m-dimensional space. This gives the motivation behind his
second minimization method. This method as simplified by Zangwilll®®] is as

follows.

Powell's second method:
Set s!, = e, x!; is picked, &: 0<e<l is given as the accuracy for accepting a
direction
&'=1andr=1
1. Find A", which minimize E(x",_; + A"} s"})
and x"_ = X"} _; +Af st

k=1,2,3,..,N
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2. Define o' = Il X" - x"y Il and s"y,; = (X" - Xy )/ af
3. Find Ay, ; which minimizes E(x"\ + A"y, S"Ny1)
4. Setx) =Xy, = XN+ Mgy g
5. M =max { A 1k=1,2,3, ..., N}
6. If A" 6/ af = € then
sl =5, fork=#s
srHl =gl
S+l =r 8 ar
7. If A 6" a" < ¢ then
sl =57 fork=1,2,3,..,N
S+l — gt

8. r=r+l, gotostep 1

In the above algorithm, &' is the determinant,

For r=1, since the directions s, k o> { 1, 2, ..., N } coincide with the columns of
the identity matrix, the determinant §' = 1. As the method proceeds in iterations, the
objective is to find a set of directions which would have the largest determinant, for if

the determinant approaches zero, then the set of directions approach a linearly
dependent set. When a new direction s’y is found through step 3, if it replaces any
direction s', then the new determinant of the direction set will be given by &1 =

M @"ar . Since the size of this determinant is largest if the largest A' is used, then the

direction that should be replaced with the new direction should be the one that

corresponds to the largest linear step .. However, if this new determinant is seen to

be smaller than some computational tolerance €, then replacing any direction with this

new direction will make the new set of directions linearly dependent. In this case, the
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new direction is rejected and minimization takes places again with the previous set of

directions.

In addition, in [60], Fletcher gives a modified version of Smith's method which

makes it a rival of Powell's methods.
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Chapter 5

Simulations and Results

67



Computer simulations of learning have been done using Quasi-Newton,
Conjugate Gradients, and gradient-free methods. In all the simulations, inexact line
searches have been used unless indicated otherwise. Inexact line searches provide
methods with less function evaluations if the minimization methods are robust
enough. In the tables of this chapter, E is the final value of the objective function, P is
the number of presentations of all input patterns which is equivalent to the number of
evaluations of the objective function, and G is the number of new directions generated
by the scheme which for Quasi-Newton methods is equivalent to the number of
updates made to the inverse Hessian estimate and the number of gradient evaluations.
Finally, F is the number of floating point operations. In these tables, for the cases in
which local minima were reached, only E is given. In addition, a list of the

abbreviations used in this chapter's tables is given in Appendix B.

5.1. Quasi-Newton Methods

Computer simulations of the weight and activation function parameter
adjustments have been done using all the described minimization schemes as applied
to the classical XOR problem and an encoder. The input and desired output patterns
for these two problems are given in tables 2.1 and 5.1 respectively. The architectures
used for the XOR and encoder problems are also given in figures 2.1 and 5.3. Two
important measures of the performance of the minimization algorithms are the
number of times the input patterns have to be presented and the total number of
floating point operations necessary to achieve convergence. Some Quasi-Newton
methods such as BFGS, SSVM, and Davidon's updates work well with inexact line
searches and there is no point in doing a lot of function evaluations within a line
search subproblem. The performance of some methods such as the DFP method is

however much better when an exact line search is done.
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5.1.1. Classical Quasi-Newton Methods

The results of the computer simulation of the classical Quasi-Newton methods
of the Broyden family with no scaling are given in table 5.2. Termination of the
minimization took place when E < le-5 or when [E,, - E,| < le-6. In the tables,
XOR I and XOR II correspond to the XOR problem when the first and second set of

initial conditions were used respectively (see figures 5.1 and 5.2).

figure 5.1 (Initial State for the XOR I Problem)

figure 5.2 (Initial State for the XOR Il Problem)

figure 5.3 (Neural Network Simulating the Encoder Logic of table 5.1)

The first set of initial conditions in the XOR problem were possibly close to a
ridge in the objective function. This introduces a handicap for the Steepest Descent
technique. However, most Quasi-Newton methods tested show a good performance
in finding a local minimum (two orders of magnitude better than the Steepest Descent
method.) Pearson II and BFGS find the global minimum in very few number of
iterations. For the second set of initial conditions used in the XOR problem, Steepest

Descent does an order of magnitude better than the first set. However, the Quasi-



Newton methods still have a much better performance. Again, Pearson II and BFGS
provided a near global minimum. However, the DFP, Broyden and Projected
Newton-Raphson (Zoutendijk) methods also converged to the near global minimum
much in the same speed as BFGS and Pearson II for XOR II. A performance similar
to that in XOR I is shown in the encoder problem with Pearson II and BFGS in the
leading positions. Also, it is seen from the final values of the objective function that

Quasi-Newton methods converged to points much closer to the global minimum ( E =

0.)

table 5.1 (Encoder Logic)

table 5.2 (Results of Classical Quasi-Newton Methods)

table 5.3 (Results of Oren's SSVM method )ﬂ<
*O(,0)'s denote the two parameters of equation 3.46.

5.1.2. Self-Scaling Quasi-Newton Methods

Table 5.3 presents the results of a set of simulations for the purpose of
comparison between classical and SSVM Quasi-Newton techniques as applied to
neural network learning. Two important measures of the performance of the

algorithms in this
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comparison are the number of times the input patterns had to be presented (P) and the
number of updates which were made to the initial guess for the inverse Hessian

matrix, to achieve convergence (G).

In picking the parameters p, and @,, a trial and error method was used. The

switching method of [34] did not perform well compared to pre-chosen constant
parameters. This result agrees with experiments done by Oren[34]. (e.g. the number
of presentations and inverse-Hessian updates for the encoder problem were 77 and 30
respectively, when this switching was done.) Also, the switching methods of [35]
which were demonstrated to have done well were not used here due to their
impracticality for neural networks. In these switching methods, an update of the
Hessian matrix should be kept as well as the inverse Hessian. This would require a

lot of memory when a large network is involved.

Computer simulations of the (Quasi-Newton with initial scaling) learning have
been done using 3.52 and 3.55 for initial scaling of the approximate inverse-Hessian
matrix with the BFGS algorithm as applied to the classical XOR problem and an
encoder. For the XOR problem, two different set of initial states were chosen.
Results of the computer simulations are given in table 5.4. Results are compared to
those obtained for the BFGS algorithm. BFGSa and BFGSD in table 5.4 correspond

to BFGS with initial scalings (3.52) and (3.55) respectively. Termination of the

minimization took place when E < le-4 or when | Ej 1 - Ej I < le-5.

table 5.4 (Results of BFGS Method with Initial Scaling)
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figure 5.4 (Comparison of the Performance of Quasi-Newton
Methods for the XOR I Problem)

figure 5.5 (Comparison of the Performance of Quasi-Newton
Methods for the Encode Problem)

5.2. Conjugate Gradient Techniques

Table 5.5 presents the results of the Fletcher-Reeves, Iterative Partan, and
Continuous Partan conjugate gradient methods applied to the learning in the XORI
and XORII problems. As shown by the table, the Fletcher-Reeves method is the most
efficient technique among these conjugate gradient methods. These results have been
obtained in accordance with exact and inexact line searches. Results show that these
methods work much better when an exact line search is employed. When applied to
the encoder problem, all the methods failed to reach a near global minimum and
converged to a number of different local minima. Therefore, these results were not
included in table 5.5. For simplicity of comparisons, in figure 5.6, the number of
presentations necessary for convergence of learning have been graphed for the
Fletcher-Reeves (F-R) and Continuous Partan methods as applied to the XOR I

learning problem.

table 5.5 (Results of Conjugate Gradient Methods)

figure 5.6 (Comparison of the Performance of Conjugate Gradient
Methods with Quasi-Newton and S.D. Methods)

5.3. Gradient-Free Techniques
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Computer simulations of the learning have been done using Powell's first and
second algorithms for minimizing the objective function E of the XOR problem.
Results of learning based on Powell's methods are compared to those of table 5.2 for
the steepest descent (S.D.) and the BFGS algorithms. These results are given in table

5.6. Termination of the minimization took place when E < le-4 or 1 E, , - E, I < le-

5.

table 5.6 (Results of Powell's Gradient-Free Methods)
The table shows that the second method of Powell had the best performance and it
required less floating point operation than any other method , for convergence.
However, in general, both methods of Powell performed satisfactorily, specially
considering the fact that only function evaluations were required. Figures 5.7 and 5.8
show a bar chart comparison among the methods of table 5.6 for the number of new
directions and number of floating point operations (FLOP's) required for

convergence. Powell's second method required the least of both measures.

figure 5.7 (Comparison of Number of New Directions Found
for the XOR Il Problem Using Powell's Methods)

figure 5.8 (Comparison of Number of FLOP's Required
for the XOR II Problem Using Powell's Methods)
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Chapter 6

Conclusion
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Looking at the state-of-the-art in neural network learning, a need was noted for
faster learning algorithms. For general non-quadratic objective functions, steepest
descent techniques are known to perform well, away from the minima and Newton's
method works well, in the vicinity of the minima. Therefore, for a fast learning
algorithm, one should take advantage of the best of the two methods. In Newton's
method, evaluation and inversion of the Hessian matrix pose a difficult and time

consuming problem.

6.1. Quasi-Newton Methods

Classical Quasi-Newton methods start off with an estimate of the inverse
Hessian matrix equal to the identity matrix. This matrix provides the Steepest descent
direction. As patterns are presented, the Quasi-Newton methods provide an update to
the inverse Hessian matrix. This will in the limit provide an optimal direction of

descent based on the momentum of the inverse Hessian matrix.

Results show an increase in the rate of convergence of about two to three orders
of magnitude from the Steepest Descent technique to Quasi-Newton methods.
Pearson II and BFGS showed the best performance in all the classical Quasi-Newton
methods simulated. Other Quasi-Newton methods converged to local minima which
does not show any weakness on their part. The problem with local minima is faced
by all learning algorithms specially with neural networks which contain lots of local
minima by nature. The condition numbers of the inverse Hessian approximates given
by the BFGS method were in average lower than those of the other classical methods
such as DFP, etc. This explains in part the better convergence rate of the BFGS
algorithm. The initial state of XORI and its final state given by the BFGS learning

algorithm are provided in figures 5.1 and 6.1 respectively.
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The Pearson II algorithm is a much simpler algorithm than BFGS and therefore
uses less number of floating point operations ( though more iterations ) to converge.
However, Pearson II does not guarantee a positive definite inverse Hessian
approximation while BFGS does, provided the right line search is used (see sec.
3.3.3.) Therefore there is a trade-off between the number of floating point operations
and the confidence on positive definiteness of the inverse Hessian approximation

(descent in direction.)

Results show an increase in the rate of convergence of up to 100% in the case of
SSVM methods over BFGS and Pearson II. SSVM updates are known to perform
well especially for problems with a large number of variables.[?8] This fact is
illustrated by the outstanding performance of the SSVM method compared to BFGS
in the encoder problem where the size of the state vector "x" is 25. The SSVM
algorithm of Oren and Spedicato generated inverse Hessian approximates which had

even lower condition numbers than those generated by the BFGS method. Again, this

is a predominant reason for their superb performance.

Quasi-Newton methods with initial scaling of the approximate inverse Hessian
matrix are known to perform well especially for problems with a large number of
variables.[36] This fact is illustrated by the outstanding performance of the BFGSa in
XOR II and BFGSb in XOR I compared to BFGS without initial scaling. However,
no major change is seen in the application of the initial scalings to the encoder
problem. This is due to the fact that the initial scaling factor comes out to be very
close to "one" meaning that the identity matrix is the best choice for the initial guess

of the inverse Hessian matrix. Optimal conditioning introduced by the initial scaling
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is also an important reason for the acceleration of convergence of the BFGS

algorithm.

Figures 5.4 and 5.5 show a comparison of the number of presentations and the
number of FLOP's required for convergence among steepest descent, Pearson II,
BFGS, BFGS with initial scaling, and SSVM algorithms for the XOR I and encoder
problems. Note that the charts are provided on a logarithmic scale and show two to
three orders of magnitude reduction in the number of presentations and FLOP's from

the steepest descent technique to the Quasi-Newton methods.

6.2. Conjugate Gradient Methods

Among the conjugate gradient methods tested, the Fletcher-Reeves method
showed the best performance. However, as seen in the results of the simulations, all
conjugate gradient methods worked well with exact line searches and took much
longer to converge when an inexact line search was used. Conjugate gradient
methods require less memory space for operation than both Quasi-Newton and
gradient-free methods and a little more than the Steepest Descent technique.
However, there is a trade-off because of the need for an exact line search. These
methods showed to be much more superior to the Steepest Descent technique in their
rate of convergence specially considering the fact that they do not require much more
memory space compared to the Steepest Descent. The performance of the conjugate
gradient methods is still much worse than those of Quasi-Newton methods and the
fact that inexact line searches could be used with Quasi-Newton methods makes them
much more attractive than conjugate gradient methods even with the higher

requirements for memory space.
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6.3. Gradient-Free Methods

A quantitative comparison between Powell's methods and the methods of table
5.2 is not very informative for the reason that the whole purpose behind gradient-free
schemes is to avoid gradient evaluations. Steepest descent, Quasi-Newton, and
conjugate gradient methods make first gradient evaluations and other costly
computations such as updating the inverse-Hessian approximate. With these points in
mind for learning in neural networks, the gradient-free methods could prove more
efficient than the techniques using gradients. An important feature of these gradient-
free methods is that as long as the weights and activation function parameters of the
network are changeable, the learning schemes do not require any knowledge of the
internal structure and connectivity of the neurons. This makes the learning algorithm

very general in its usage and easy to implement for almost any network.

Figures 5.7 and 5.8 show comparisons of the number of new directions and the
number of floating point operations (FLOP's) required for convergence among
Steepest Descent, BFGS, and the Powell methods. Powell's second method required
the least direction evaluations and FLOP's. It should also be noted that most of the
FLOP's were required by objective function evaluations in Powell's methods and by
search direction evaluations in gradient methods. In a neural network, the least costly
operations are, by design, those of function evaluations. This makes Powell's
methods much more efficient in practice than what is depicted by available figures

from simulations.

For learning control of repetitive processes, which will be discussed in detail in
the next part of this thesis, the gradient-free learning techniques make it possible to
include the controlled plant in the network as an additional neuron (Figure 6.2).

Learning with this configuration is not possible when gradient based learning schemes
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are used, since the plant is considered to be unknown and its derivatives are therefore
not available. However, with gradient-free learning techniques discussed here, the
output error of the plant could be minimized where in figure 6.2, the y's and y4's are
supervectors of actual and desired outputs respectively, containing data for all sample

points in a repetition (see section 7.2).

figure 6.1 (Final State of the Neural Network Simulating
the XOR Logic as Produced by the BFGS Method)

6.4. Choosing From Available Minimization Methods

SSVM Quasi-Newton methods seem to be the best choice when gradients are
easily available and Powell's second method when gradient evaluations are expensive
or impossible. However, a drawback of the proposed methods is the large memory
size needed for retaining the inverse Hessian matrix or set of directions respectively.
This problem can be solved in part, for Quasi-Newton methods, since the inverse
Hessian is symmetric and not all the elements need to be kept in memory. However,
for problems with large number of neurons, this still poses a limitation. If memory
storage is still a problem, then the best method would be the Fletcher-Reeves
conjugate gradient method with an exact line search. Although, with the price of

memory going down, one may still favor methods which result in greater speeds.

figure 6.2 (Control of a Repetitive System using Neural Networks)
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Part II: LEARNING CONTROL
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Chapter 7

Learning Control through Numerical Optimization
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7.1. Introduction

In this chapter, a time variant, discrete-time model of the learning control
system is devised in the form of a system of linear algebraic equations relating the
change in the state of the system to the change in the control action from one
repetition of the task to another. This set of linear equations gives the transition
between any two repetitions. This system is then solved for the appropriate control
action that will minimize the tracking error of the controlled dynamic system, only
requiring the availability of the order of the system, without any prior knowledge of

the system parameters. This leads to a learning-adaptive controller.

7.2. Problem Formulation
We consider a general discrete-time linear time-varying or time-invariant

system,
(7.1a)

(7.1b)

where the state, x, is n-dimensional, the control, u, is m-dimensional, the output,y, is
g-dimensional (q=m), t is the time step in the p-step repetitive operation, and k is the
repetition number. For simplicity, the dimension n of the system is assumed known,
but generalization to just knowing an upper bound on n is easily considered. Also, A,
B, C, and wk are assumed unknown -- otherwise one could determine in advance what
control to use to minimize tracking error, and there would be no need for learning

control.

In the learning control problem (as contrasted with the repetitive control
problem in [11]) the system is assumed to always start from the same initial state in

each repetition of the task. Matrix A includes any state or output feedback control
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present in the system and the symbol uX is reserved for the signal added to the control
for learning purposes. A time varying model is considered because many applications
such as in robotics involve nonlinear dynamic systems which when linearized produce
linear models with coefficients that vary with time step, and vary in the same manner
each repetition. In such repetitive operations it is often the case that there will be
disturbances wX(t) that repeat with each repetition of the task, and the learning can be
made to also correct for this source of errors in a natural way. One of the purposes of
the feedback control is to handle any non-repetitive disturbances, and these will be
ignored for purposes of designing the learning controller (some analysis of the effect

of random noises in learning control can be found in [13]).

The solution to (7.1) can be written as,
(7.2)

where the product symbol is taken to give the identity matrix if the lower limit is
larger than the upper limit. Let p be the total number of time steps. Defining a

difference operator 8, z(t) = z(t) - z%(t) for any variable z, and using the fact that xX(0)

and wk(t) are repetitive, one can write,
(7.3)

where,

yo =T @) . ¥ T )T
uk = [kT0) w5T(1) ... ukTp-1)T
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The objective is to find a change in the control at each repetition k that will, as k
progresses, minimize the quadratic error function

(7.4)

where yp, is the desired output history for the p-step process. In previous work on

learning control in discrete systems [13-15:611 ag well as in the extensions of these
papers for journal publication, attention had to be directed to the problem of ensuring
that the special desired trajectory was in fact a feasible trajectory for the system to
perform. For example, one method involved assuming knowledge of the system
dimension n, and assuming the system is controllable, and then specifying the desired
measured output variable history every n steps, which guaranteed to be a feasible
specification by modern control theory. In the present approach these conditions can
be relaxed if one is satisfied with minimizing (7.4) rather than insisting that (7.4) be

driven to zero.

Substitute (7.3) in (7.4),
(7.5)

Note that the gradient of this objective function and the Hessian matrix of second

partials are,
(7.6)

(7.7)

It is now possible to characterize the nonlinear optimization problem

represented by our learning control objective. We wish to

1. minimize a function which is known to be quadratic in the control change

variable 6, u,
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2. but the first derivative of this function is not directly available, because we do
not know the system matrices A, B, C, and hence do not know P,

3. and the second derivative is similarly unavailable.

Having characterized the problem, here are some preliminary assessments of the

possible approaches to the learning control problem as formulated here.

7.3. Quasi-Newton Methods

Over the last couple of decades various finely tuned quasi-newton based
methods have been generated for the minimization of unconstrained nonlinear
functions. Among these methods are the rank 1 Broyden method, DFP, BFGS, and
other members of the Broyden family of methods as well as SSVM methods ( see
chapter 3 ). An important characteristic of these methods is the use of the iterative

process to approximate the Hessian matrix so that no explicit expression for the

second derivative is needed. If we could evaluate the first derivative df/d(6,u), then
the BFGS method would converge to the optimal 6,u in approximately mp
repetitions. One might note that if one actually knows the df/d(5,u) of (7.6), then one

could equate it to zero and solve for 6,u and obtain the optimal §,u in one step --

something which could be classified as a Newton method in numerical optimization.

Since we do not know df/d(5,u), one can consider the use of Quasi-Newton

methods with approximation of the gradient obtained by a finite difference method.
In order to obtain these differences for all of the mp elements of the gradient vector it
would require approximately mp repetitions of the task to make one evaluation of the
gradient vector. The total number of repetitions required for convergence would

exceed (mp)z. This makes such methods a poor choice in learning control. Methods

85



that do not require the use of a gradient in picking the search direction are called for.
Note that the same difficulty eliminates the use of steepest descent and conjugate

gradient methods.

7.4. A Direct Search Method

A method which does not require knowledge of gradients, is the direct search
method of optimization as expressed by Wood [54] and later by Hooke and Jeeves [53],
The direct search method takes advantage of the quadratic nature of the objective

function is as follows:

1. Pick mp orthogonal directions in the 6,u space. For each of these directions

in succession, perform the line search as in the next steps.

2. Take a step along the chosen direction in §,u space, and apply the resulting

control in the next repetition. Evaluate f from the data of this repetition.

3. If f decreased pick another step in the same direction, if it increased pick a

step in the opposite direction, and apply to the system.

4. Since the quadratic objective function surface in the plane of the chosen

direction is a parabola, the data from 2 and 3 determines this parabola, and can be

used to find the minimizing &,u for this direction. This completes the line search.

5. Return to 2 with the next direction.

This algorithm will improve the tracking every three repetitions, provided there

is no noise in the measurements. There is no guarantee for a finite convergence
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unless the directions of search are mutually conjugate about the Hessian matrix of the
quadratic objective function. Care must be taken to avoid large disturbances to the

repetitive process during the line search.

7.5. Conjugate Direction Methods

If the unidimensional search of the last section were used along mp mutually
conjugate directions, then in the absence of noise, the system would converge after
minimizing the quadratic objective function in all these directions. There are a few
conjugate direction methods available in the literature.[59-57-601 These methods start
with a set of mp orthonormal directions which could be coincident with the columns
of an mpxmp identity matrix. Then, by doing unidimensional searches in these

directions, a new set of directions is generated.

Rosenbrock'sl>>] method provides a direction coincident with one of the
eigenvectors of the Hessian (H) matrix. Eigenvectors of H are mutually conjugate
and point in the direction of the minimum of the quadratic objective function. One
such eigenvector is reached after mp unidimensional searches along the orthonormal
directions. The rest of the mp-1 directions are found by using the Gram-Schmidt [62]
orthogonalization procedure. This cycle is then repeated to provide another
eigenvector of H. There is no guarantee that the eigenvectors are not repeated.

Therefore, there is no general finite convergence proof available.

Rosenbrock's method might converge to a non-minimum point in which case the
method breaks down. To avoid or delay the failure of the minimization procedure,
the method due to Davies, Swann, and Campey [56] (DSC) uses a renumbering system

for the directions of search. Another method due to Powell (see 4.2.3) provides a
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direction set with one of the directions conjugate to the complementary mp-1
directions. This set is obtained after a cycle similar to that of Rosenbrock and DSC.
However, Powell's method does not require any orthogonalization procedure after

every cycle and it never breaks down as Rosenbrock and DSC methods do.

None of the above methods guarantee a finite convergence since the main
direction after each cycle might be linearly dependent on directions obtained in
previous cycles. However, if the set of directions are linearly independent, then the
function minimization will converge within mp(2mp+1) repetitions. Powell's second

method provides this rate of convergence.

7.6. Generalized Secant Method
7.6.1. Formulation

Writing equation (7.2) for successive repetitions k and k+1 and subtracting them
from each other and assuming that disturbances wk are repetitive with a period of p

and that the initial conditions are repetitive from repetition k to k+1, we can write,
(7.8)

and define,
(7.9)

(7.10)

Then equation (7.8) could be rewritten as,
(7.11)

Suppose that there exists some change in our input vector which would lead to a zero
tracking error at the next repetition, eX*1=0, then equation (7.11) for that input change

could be written as follows,
(7.12)
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If PX is an approximation to P at the k! repetition, then one can write,
(7.13)

where vk

is a change in control vector at repetition k that would use the information in
the approximation to P, P, and result in an e¥*! which is zero (or is minimum F norm

as will be discussed later.)

Let us say that we are provided with an initial guess of the P matrix at the zeroth

repetition,
(7.14)

then, v0 could be solved for, by using the error vector e” provided by the real system

using control vector u®.

Generally, an exact v might not exist, but a minimum error solution could be
obtained for v0 by using the Moore-Penrose pseudo-inverse in the sense that v? would

minimize,

namely,
(7.15)

If we keep (7.13) satisfied for all k, then we could write,
(7.16)

minimizing Il p& vk + ek I .

At any repetition k, the actual system parameters P could be written as,
(7.17)

where DX is a matrix of corrections for P¥ at each repetition k.
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Substituting for P in equation (7.11) from (7.17),
(7.18)

or,
(7.19)

Solve DX vk from (7.19),
(7.20)

Since eX*! is the error through the introduction of uk*! = uk + vk then the only

unknown in equation (7.20) is the correction matrix Dk,

One solution to (7.20) would be,
(7.21)

where zX are chosen in the following way!211:

- If k = mp-1 then z¥ is chosen orthogonal to the previous mp-1 control steps vk

- If k < mp-1 then z¥ is chosen orthogonal to the available k steps, V9, ..., vK'1,
One possible choice is to pick 7K as a linear combination of v0, ... , vk which would be

orthogonal to all V0, ..., vk-1,

A few orthogonalization methods are available in the literature which may be
used for the actual evaluation of the z vectors. These include the well-known Gram-
Schmidt orthogonalization processl®?] and a more advanced technique due to
Fletcher(©3] in which the number of vectors in the set are likely to be increased or

decreased.

Then using an orthogonalization method and equations (7.16), (7.17), and (7.21)

the following recursive algorithm will be generated,
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(7.22)

(7.23)

7.6.2. Convergence

The set of z¥ picked in equation (7.23) has the property that
(7.24)

therefore,
(7.25)

Now assume that some n < mp is the maximum number of linearly independent
v's which could be found and thus v" is a linear combination of all previous n linearly

independent control steps. Then,
(7.26)

From equation (7.26),
(7.27)

Also,

(7.28)

Substituting (7.28) into (7.27),

or,
(7.29)

Using equations (7.11), (7.19), and (7.29),
(7.30)

(7.31)
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If v" satisfies (7.13), then,

(7.32)
which means that e™! must be zero. However, if v? only satisfies (7.13) in a least F
norm sense, then e™! would have a minimum F norm, or,

(7.33)

where, e?*! has minimum F norm.

If n (the rank of PY-P) is equal to mp, then after mp+1 repetitions of the task, a
minimum F norm tracking error will be achieved. Of course, n, the rank of PO-P may
be less than mp in which case if the directions in PO containing the correct portions of
P are given, then n would be less than mp by that number of correct guesses.
However, if one is not sure of his initial guess for the P matrix, then mp+1 is the

maximum number of repetitions before convergence.

7.7. Simulation and Results

The learning control algorithm based on the Generalized Secant method was
tested on two nonlinear dynamical systems. These systems are a Non-linear Mass-
Spring-Dashpot and a One-Degree-of-Freedom Pendulum with damping. The details

of these systems are given in the following two sections.

7.7.1. Non-Linear Mass-Spring-Dashpot (NLMSD)
The simulated NLMSD dynamics is given by the following differential

equation:
(7.34)

where,
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Mass:

m = 1.0 kgr
Spring Constant:

k =1.0 N/m
Damping Constant:

¢=1.0 Ns/m

The mass was asked to follow the trajectory of figure 7.1.

figure 7.1 (Nonlinear Desired Trajectory Used
for the Systems of Chapters 7 and 8)

7.7.2. Pendulum
The dynamics of the simulated pendulum (figure 7.2) obeyed the following

differential equation:
(7.35)

figure 7.2 (The Pendulum Used for the
Control Simulations of Chapter 7 and 8)

where,
mass:
m = 1.0 kgr
link dimension:
I =0.1 m
Damping Coefficient:
c¢=1.0 Ns/m
The robot was asked to swing across two radians so that the nonlinearity of the system

cannot be neglected (figure 7.1).
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7.7.3. Simulation Results
A linear Mass-Spring-Dashpot (LMSD) was first simulated using the
Generalized Secant Controller. This system is a linearization of the NLMSD system

of equation 7.34 and is described by the following differential equation.
(7.36)

The results of this simulation are given by figure 7.3 through plotting the sum of
squares of the errors versus the repetition number. The first repetition was done using
a self-tuning regulator with forgetting factor 1 (a complete theory of the self tuning
regulator is given in Chapter 8.) The sum of squares of errors in this simulation

converges to 1.08 and did not go to zero.

Barnes!2!] proposes a practical stability criterion which translates to imposing a
small positive lower limit to the inner product of the direction in which the P matrix is
updated and the control step taken. Namely, the steps which do not meet the criterion

of the inequality 7.37 should be rejected.
(7.37)

This ensures a numerically stable update to the P matrix. If a step is rejected for not
meeting (7.37), then a new step vy should be taken. If this step is made equivalent in
the same direction as the P update direction, zy, then the inequality of 7.37 is always
satisfied. Note that 7.37 could be tested before the control step is inputted to the
dynamic system. Therefore, if the step is rejected, for practical purposes there is no
mathematical burden created. Barnes[2!] suggests taking the magnitude of the new
step to be equal to that of the rejected step. This suggestion was shown to trigger

instabilities in practice when applied to simulated systems in this thesis. Therefore, to
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avoid instability, the size of the new steps were taken to be a small number which is
greater than the accuracy of the computer and yet is small enough compared to the
magnitude of the input vector in repetition 0, not to cause much deviation in the
system dynamics. This choice turned out to be very practical when applied to the
LMSD system (see figure 7.4.) To see the robustness of this controller, it was applied
to the nonlinear systems of equation 7.34 and 7.35. figures 7.5 and 7.6 show the plots
of the sums of squares of errors for the NLMSD and pendulum systems. In both of

these simulations the rejection of control steps was done with p=1e-4.

In application to the LMSD and NLMSD systems, zero trajectory error was
achieved after 8 repetitions which is less than the ceiling provided by the theory (10
repetitions.) Similarly, the pendulum reached a zero trajectory error after only 9

repetitions which is again one repetition less than the ceiling provided by the theory.

It should be noted that the theory in this chapter was derived for control of a
time-variant dynamic system where the simulations were done on highly nonlinear
systems performing a highly nonlinear task. These simulations provide practical

evidence on the robustness of this learning controller.

figure 7.3 (Squares of Errors for the LMSD System
Using the Generalized Secant Learning Controller without Rejections)

figure 7.4 (Squares of Errors for the LMSD System
Using the Generalized Secant Learning Controller with Rejections)

7.8. Conclusion
Theoretical evidence shows that the Generalized Secant method requires the

least number of repetitions for convergence. The Generalized Secant method was
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therefore used in the simulations of this chapter. Results show that without rejection
of noninformative control steps, the system could become unstable and that the use of

a p which is too small in inequality 7.37, could result a big reduction in the rate of

figure 7.5 (Squares of Errors for the NLMSD System Using the
Generalized Secant Learning Controller with Rejections)

figure 7.6 (Squares of Errors for the Pendulum Using the Generalized
Secant Learning Controller with Rejections)

convergence. Therefore, there is a trade-off in the magnitude of p. Also, in practice
the magnitude of steps which replace rejected control steps should be made small
enough not to cause instabilities in the system. In general, the Generalized Secant
Learning Controller has shown to be very stable and robust in a practical sense when

applied in the simulations of this chapter.
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Chapter 8

Self-Tuning Regulator with Learning Parameter Estimation
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8.1. Introduction

One of the major factors contributing to performance limitations of today's
industrial automated machines/processes is the restricted capabilities of their control
systems. A wide class of these controllers employ constant pre-defined gains and do
not take into consideration the nonlinear dynamics in these machines. The result is
that these machines are not being utilized to their full potential in terms of their speed
and precision. With a more sophisticated control strategy, it is possible to compensate
for the complicated effects of nonlinearities which have in the past been considered as

mere disturbances in most systems.

Several advanced schemes have been proposed for an improved performance,
which would generate control actions to compensate for the aforementioned nonlinear
dynamics. These include nonlinear feedback control [64]  feedforward control [65],
resolved motion control [06-67] sliding mode control [68] repetitive control [11,69]
and learning control [10.701  In addition, adaptive controls have drawn a lot of
attention in various applications [71-73]. One class of these adaptive controllers is the

self-tuning regulator [74],

A self-tuning regulator consists of a parameter estimator and a controller. The
parameter estimator estimates the parameters of an approximated model of the
controlled system by utilizing a recursive estimation scheme. Based on the
approximate model and the estimated parameters, the controller adjusts its actions to
maintain its performance. Therefore, the performance of a self-tuning regulator

depends greatly on that of the parameter estimator employed.

One common characteristic of the existing estimators is that they start their

estimation process with each new task and do not use the information acquired from
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their past experiences even when performing the same task over and over again, as in
many manufacturing applications. The implication is that the system will keep

making the same errors at corresponding times in the duration of each repetition.

Another drawback of these estimators is that they have to keep the changes of
estimations small between neighboring sample instants to maintain their immunity to
noise and disturbances. Consequently, the estimators cannot respond to sudden

changes of parameters quickly.

The objective is to present a learning adaptive control scheme based on a
learning estimator which utilizes the information from past performances of a
repetitive task to make a more accurate estimate of the system parameters repetition
after repetition. Consequently, the learning adaptive controller improves its
performance throughout the repetitions. Due to the addition of the repetition domain,
the estimator is allowed to respond to sudden changes of parameters along the time

axis.

8.2. Theory of the Self-Tuning Regulator
The general equations of motion of most rigid-body systems, with the
consideration of dynamics such as inertial, gravity, Coriolis, centrifugal, and other

forces will be as follows:
(8.1)

where, T is the nx1 vector of generalized forces supplied by the actuators, a is the
nx1 vector of generalized coordinates, M(a) is the nxn equivalent mass matrix,
C(a,a) is the nx1 vector of generalized forces due to Coriolis and centrifugal forces,

F(a) is the nx1 vector of generalized forces due to viscous friction, G(a) is the nx1
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vector of generalized forces due to gravity and T is the nx1 vector of disturbances,

friction, and other unmodeled forces [73].

If equation (8.1) is discretized and linearized about a set of reference
coordinates at each time instant, the nonlinear equations of motion for each of the
generalized coordinates can be approximated by a set of second order linear

difference equations.

Such a nominal linear difference equation can be written as:

a(t) + 9 a(t-1) +9, a(t-2) = qd( 03 u(t) + 94 u(t-1) ) + v(t) (8.2a)
or,

A@hH a®=qB(@h) u®) +v() (8.2b)
where q'1 is the backward shift (or delay) operator such that, q'1 a(t) = a(t-1); d is the
delay, u(t) is the input at time step t, a.(t) is the output at time step t, and v(t) denotes
the equation error. A(q~!) and B(q'!) are the system matrices which could change

from one instant to the next.

Throughout this formulation the following assumptions are made:

1. the delay d is known,

2. all zeros of B(q™}) lie strictly inside the unit circle.
Taking d=1 and solving for a(t) in equations (8.2):

a(®) =91 ¢V + v() (8.3)
where,

eT(t) =(01(0), 02(1) , 93(1) , 94(1) ) is the parameter vector at time t and

¢T(t) = (-o(t-1), -a(t-2) , u(t-1) , u(t-2) ) is the linear regression vector.
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A self-tuning regulator models a given dynamic system with a difference
equation in the form of (8.3) and uses a recursive estimator to identify the parameter
vector @(t) at each sampling instant and adjusts its control action accordingly.
Therefore, the overall performance of the control system is very much dependent on

how close these estimates are to the real system parameters.

One popular parameter estimator is the Recursive Least Squares (RLS)
parameter estimator which minimizes the sum of squares of the equation errors v(t)

over the time. Therefore, at time step k, the function,
(8.4)

is minimized, where A is a forgetting factor which is a measure of how fast the old

data is forgotten. The range of A is between 0 and 1 and as it becomes smaller the old

data is forgotten more quickly. Using equation (8.3), the expression for V| can be

written:

(8.5)

Equation (8.4) is then minimized with respect to @ and a parameter (g) vector is

obtained for time step k.

To recursively find a g vector which would minimize (8.5), the following

algorithm can be used:[75-76]
(8.6a)
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(8.6b)

(8.6¢)

where, L is an intermediate vector which is calculated each time to avoid matrix
inversions and P is the covariance matrix which signifies the degree of confidence in
the accuracy of the parameter estimates and is started off as a diagonal matrix with
large diagonal elements to minimize the effect of the initial guess for the parameter

vector.

By nature, least squares estimators have to provide a new estimate of parameters
close to the previous estimate. If the changes of the controlled plant are large
between two consecutive steps and they continue to change, the parameter estimator
may not keep up with the changes and poor estimates will be provided. These poor
estimates will then lead to a poor control action on the part of the controller. One
solution that comes to mind is increasing the sampling frequency which due to limited

computational capabilities and quantization errors is usually not a practical solution.

If the task being executed is repetitive, then everytime the task is started, the
same procedure is repeated and the controller starts everything fresh without looking
back at how it had performed previously. Therefore, the controller will make the
same errors each time it repeats the task. The following proposition provides a
solution which will not only use the knowledge acquired from previous repetitions,

but it will also allow greater parameter changes in neighboring time steps.

8.3. Learning Recursive Least Squares Estimator (LRLS):
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Let us look at any sample instant k in the time domain. If the task being
performed is repetitive, there is a nominal difference equation (8.7) which defines an
equivalent linear time-variant system for the non-linear system at time step k and

repetition r.

af(k) =" T(k) ¢*(k) + vI(k) 8.7)
where,

0" T = [o%1(K) , 0% (K) , 0T3(K) , 074 (K) 1, (8.8a)

o' T(k) = [ -al(k-1), -af(k-2) , uf(k-1) , u'(k-2) 1, (8.8b)

and vI(k) denotes the equation errors.

Minimizing the sum of squares of the equation errors vI(k) in the repetition

domain, for time step k, will minimize,
(8.9)

where, v is the forgetting factor in the repetition domain, similar to A in equation

(8.5).

Minimizing equation (8.9) for g, will give a new estimate of the parameters (g) for
time step k and repetition r as presented in equation (8.7). To minimize (8.9) and

solve for g in a recursive fashion, the following algorithm can be used:
(8.10a)
0"(k) =g" (k) + L1 (k) [af(k) - ™! T(k) ¢T(k)] (8.10b)

(8.10c)

These g'(k) (k=0,1,2,....N) can be evaluated and stored after repetition r has

been completed and before repetition r+1 starts. When repetition r+1 starts,

103



corresponding values of gF could be used at each time step k to apply an appropriate
compensation through the control law used. As seen by equations (8.10), since ej(k)‘s
(k=0,1,2,...,N) are updated in the repetition domain, their difference is not limited to

that allowed by the recursive least square estimator shown in (8.6).

8.4. Control law:

Since the control law is not the emphasis of this research, the One-Step-Ahead
control law was selected for its simplicity [71]. In general, the self-tuning regulator is
very flexible with respect to the employment of control laws. Virtually any technique
(pole-placement, minimum variance, etc.) can be accommodated. The One-Step-
Ahead control law is the application of an inverse system while an estimate to the
system parameters is known. The second order linear time-variant difference equation

approximating the non-linear dynamics at any time instant k is:

a(k) +91(k) ak-1) + g,(k) a(k-2) = 95(k) u(k-1) + g4(k) u(k-2) (8.11)

If ag(k) denotes the desired coordinate at time step k, then at time step k-1, the

control,
(8.12)

should be applied.

For the first time of executing a repetitive task (r=0), any common controller
(PID, PD, adaptive, etc.) can be used. All inputs and outputs are recorded at every
sampling instant. After completing the task for the first time, the parameters (P's and
@'s) of all time steps will be updated using equations (8.10) and stored in memory.

Then, the task is repeated using the stored parameter estimates for determining the
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control at each time step using equation (8.12). The process of recording inputs and
outputs, updating the parameters and executing the task is repeated from one

repetition to the next.

In this study, among all the available control schemes, a self-tuning regulator
using an RLS (eq. 8.6) estimator and a One-Step-Ahead control law was chosen to
execute the task for the first time.This is done to demonstrate the advantage of
learning. During the first run, since g(k) is not known at time step k-1, g(k-1) should
be used. Therefore, the expression used for u(k-1) in the first time of conducting the

repetitive task is:
(8.13)

However, in the following repetitions the above restriction does not exist and equation

(8.12) can be used.

8.5. Convergence, Simulations, and Experimental Results:

A self-tuning regulator, utilizing a stable controller, converges if the parameter
estimates converge. This requires that the model structure used in the estimator be
correct and that the input signal be sufficiently rich in frequencies. Since a least

squares method is used, it is necessary that there be no correlation in the disturbances.

[75]

The learning self-tuning regulator was applied, through computer simulation, to
the control of the one degree-of-freedom robot manipulator and the nonlinear mass-
spring-dashpot (NLMSD) system described in chapter 7. Forgetting factors used in

the parameter estimator were,
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A =0.98
and,

v=0.98

Figures 8.1 and 8.2 present the simulation results with a plot of the tracking
error versus time steps for different repetition cycles in the pendulum and NLMSD
problems respectively. Figures 8.3 and 8.4 show that the sum of squares of errors

decreases drastically toward zero as the number of repetitions increases.

These results show a near perfect regulation through the introduction of learning
adaptive control. A perfect (zero) tracking error was not achieved due to the usage of
a PD controller for the first two time steps of each repetition. Therefore, there is a
lower bound due to the error introduced by the PD controller in the first two steps, for
the reduction of tracking error. The reason for using a PD in the first two time steps is
the unavailability of data for the -1 and -2 time steps. However, if the time increment
is small enough, then the parameters at time step 2 could be used to generate the
control for the first two time steps. This will bring the limit closer to zero. Figures
8.3 and 8.4 show that an almost perfect tracking could be achieved after 4 repetitions
of the task. One should remember that in real implementation of the self-tuning
regulator, a rich persistent excitation to the dynamical system should be present such
that all the states of the system are excited at all time even if there is no need for

controlling them at certain instances.

figure 8.1 (Errors for the Pendulum Problem
Using the Learning Self-Tuning Regulator)
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figure 8.2 (Errors for the NLMSD System
Using the Learning Self-Tuning Regulator)

figure 8.3 (Sum of Squares of Errors For the Pendulum
Using the Learning Self-Tuning Regulator)

figure 8.4 (Sum of Squares of Errors for the NLMSD System
Using the Learning Self-Tuning Regulator)

Simulations were also conducted using a PD controller for the first execution of the

repetitive task and similar learning curves were observed.

In an experiment conducted by Mr. S. Y. Li who is an Associate Professor in
Department of Precision Machinery of ChangSha Institute of Technology in the
People's Republic of China, a Piezoelectric tool in a diamond cutting lathe was
controlled used this learning control scheme. The dynamics of this tool is highly
nonlinear and it features hysteresis. This highly nonlinear dynamics can be noted by
looking at figure 8.5 which is a graph of the steady-state response of the Piezoelectric

tool to the range of input voltage from 0 to 400 volts.

figure 8.5 (Steady State response of the piezoelectric tool to input
voltage 0-400V, signifying the hysteresis in its dynamics)

The Piezoelectric tool was asked to perform the demanding desired trajectory

given in figure 8.6 having a Period of 2.3435 Seconds and a sampling interval of
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0.15625 Seconds for a period of 10 Seconds in each repetition of the task. The
computer used with this setup to do the calculations was a 25 MHz Intel-80386
machine with a math coprocessor. The computational speed of this computer does
not allow the usage of the traditional Self-tuning Regulator for the first performance.
For this reason, a PD controller was used to perform the control at the first time.
Then, the Learning Self-tuning Regulator was used to repeat the task 10 times.
Figures 8.7-8.9 show a comparison of the trajectory error of the PD controller versus

the first, sixth and tenth repetition using the LSTR.
figure 8.6 (Desired output for the Piezoelectric tool in each repetition)

figure 8.7 (Output error of the Piezoelectric tool for the first execution of
the task using PD Control and the first repetition using the LSTR)

figure 8.8 (Output error of the Piezoelectric tool for the first execution of
the task using PD Control and the sixth repetition using the LSTR)

figure 8.9 (Output error of the Piezoelectric tool for the first execution of
the task using PD Control and the tenth repetition using the LSTR)

As seen by through the graphs, with only one repetition of the task, the overshoot has
decreased drastically and it continues to decrease as repetitions increase. Figure 8.9
shows an almost perfect regulation of the tool as compared with the performance of
the PD controller. Figure 8.10 gives a more informative graph of the tend of the sum
of squares of errors in different executions of the task. This value has fallen by about
60% upon the first repetition and by close to 90% at the tenth repetition, using the

LSTR.
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figure 8.10 (Sum of squares of output errors of the Piezoelectric tool for the first
execution of the task using PD Control and the ten repetition using the LSTR)

8.6. Conclusion

Simulation results show that the learning self-tuning regulator is a quick
converging controller which improves the performance of a robot manipulator and a
nonlinear mass-spring-dashpot system executing repetitive tasks. Also, the fact that
most calculations could be done off-line, makes this control algorithm very feasible.
In fact, compared with a PD (proportional plus derivative) controller, only three more
additions and three more multiplications have to be done while the mechanical system
is in motion for each coordinate at each time step. This makes the use of the learning
self-tuning regulator quite feasible with today's technology. Also, the amount of
memory needed for the implementation of this controller in an n degree of freedom

system is,

memory locations needed = 22 * # of time steps in each repetition * n.

This amount of memory, considering today's low cost memory chips, is feasible for
most applications, using even a personal computer. Therefore, it is proposed for
future research to apply the learning algorithms developed in this and the previous
chapter and study the performance of these algorithms as the number of degrees of
freedom are increased and nonlinearities such as coriolis and centrifugal forces are

introduced into the dynamic systems.

The proposed learning self-tuning regulator can be applied to the control of
general nonlinear dynamic systems as demonstrated in the simulations. It is seen

from the simulations and experimental results to be very robust when applied to
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controlling highly nonlinear plants which feature nonlinearities such as hysteresis,
generating parameter drifts in the learning domain. This controller could be applied
to many other manufacturing applications such as robotics, machining, process
controls and other manufacturing processes. Also, the notion of a learning parameter
estimator could be applied on other parameter estimators than the RLS estimator.

These are some paths for future research.
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Appendix A

A Summary of the Pertinent Mathematics



A.1. Definitions
Real / Complex Space:

RN and CN denote the N dimensional real and complex spaces respectively.

The Identity Matrix:

The N dimensional identity matrix is denoted by Iy ( or sometimes I ) and is

defined as follows,

where i, j & { 1, 2, .., N } are the row number and column number of the

corresponding element of matrix I.

Transpose / Hermitian Transpose:

Transpose of a Matrix:

The transpose of any matrix A : RN & RM is given by AT : RM & RN such that,
(A1)

where indices i E { 1,2, .., M } and j CE { 1, 2, ..., N } denote the location of
elements of the matrix such that the first index corresponds to the row number and the

second index corresponds to the column number.

Hermitian Transpose of a Matrix:
The Hermitian transpose of a matrix A : CN @ CM is given by AH : M @ CN
such that,
(A.2)

and,

119



(A.3)

Hermitian Matrices:

A Hermitian matrix A : CN & CN is the matrix for which,
(A4)

Inverse of a Square matrix:
The inverse of a square matrix A : RN & RN (if it exists ) is denoted by A-! : RN

& RN and is that unique matrix such that,
(A.5)

Norms:
To have a notion of the magnitude of matrices, we shall use the Euclidian norm

throughout this thesis. This norm is defined as follows,

Euclidian Norm of a Vector:

The Euclidian norm of a vector x(ERN is denoted by Il x Il and defined as,
(A.6)

Euclidian ( Frobenius ) Norm of a Matrix:

The Euclidian ( Frobenius ) norm of a matrix A : RN @& RM is denoted by Il A llg

or Il A ll; and is defined as,
(A7)

where Aij L(AE(1,2,..,M);jE( 1,2, ...,N })is the (i,)) element of matrix A.
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The Euclidian Norm of a matrix can also be written in the following forms,
(A.8)

where u; ,i (E{ 1, 2, ..., M } is any orthonormal basis and tr ( AT A ) denotes the

trace of (AT A) which is equivalent to the sum of all its diagonal elements.

In general, all matrix norms satisfy the following four conditions:
For A,B: RN RM and C: RMQZ RN,

I. I AllZO0and IAll=0iff A=0

2. Ik All=1kIIlAll  where k is any scalar

3.IA+BI<IAI+IIBI

4. TACIZSITATNCI

Linear Dependence / Independence:

A set of vectors s; ERN,iE{ 1,2, .., N }issaid to be a linearly dependent

set if there exist numbers A, i (E { 1, 2, ..., N }, not all zero, such that,
(A9)

If the set is not linearly dependent, then it is said to be linearly independent.

Unitary / Orthogonal Matrices:

A matrix U : CN & CN is said to be unitary if,
(A.10)

A special case of unitary matrices is V : RN & RN in which case,
(A.11)
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Matrices falling under this special case are called orthogonal matrices.

Conjugacy / Orthogonality / Orthonormality:

Any set of linearly independent vectors,

is said to be mutually conjugate about a positive definite, full rank matrix Q : RN &

RN such that the product,
(A.12)

If Q = I then the set is a mutually orthogonal set of vectors. If in addition a = 1, then

the set is mutually orthonormal (i.e. For an orthonormal set of vectors, Il v; ll; =1).

Singular Values of a Matrix:

If A:CNQ CM, then the strictly positive square roots o, of the nonzero

eigenvalues of AHA (or AAH ) are called the singular values of matrix A.

Rank of a Matrix:

Matrix A : CN @ CM has rank k if it has k singular values.

Singular Value Decomposition:

If A: CN@ CM has rank k and its singular values are denoted by 6, 20, 2> ... 2

o) > 0, then there exist two unitary matrices,
(A.13)

and,
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(A.14)
such that,

(A.15)
where,

(A.16)
and,

(A.17)
Then,

(A.18)

is the singular value decomposition of matrix A, where,

associated with the k eigenvalues oiz > 0 and the vectors u;, k+1 <i<Mand v,, k+1 <

1 < N are the eigenvectors associated with the zero eigenvalues. If A is real, then U

and V will also be real and are therefore orthogonal matrices.

Pseudo-Inverse ( Moore-Penrose Generalized Inverse ):

IfA:CNG CMand A : CM & CN, then A is the pseudo-inverse (Moore-
Penrose generalized inverse of A iff,

I.LAA A=A

2.AA A=A

3.A A and A A are hermitian
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Furthermore, if the singular value decomposition of A is given by,
(A.19)

then the pseudo-inverse of A, A is given by,
(A.20)

where,
(A.21)

E is the kxk diagonal matrix such that,
(A.22)

and k is the rank of A.

Gram-Schmidt Orthogonalization:
Ordinary Gram-Schmidt Orthogonalization Procedure:

Suppose, v, : vy ERN, i E { 1,2, ..., M }, M<N are a set of unit vectors. Then,
the following is the Gram-Schmidt procedure which generates the set of vectors z;, i

&E {1, 2, ..., M } which form an orthonormal set spanning the same space as vectors

Vi.

(A.23)
(A.24)

and,
(A.25)

Modified (Numerically Accurate) Gram-Schmidt Orthogonalization:
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The following pseudo-code presents a modified Gram-Schmidt
orthogonalization method which theoretically gives the same set of vectors as the

original procedure but it is more accurate in actual numerical implementation.
(A.26)

(A.27)

2.For1=2,3,...M

3.Forj=2,3,...M
(A.28)

(A.29)

Fori=j+1,...M
(A.30)

Sherman-Morrison Inversion Formula:

If G, G, : RN RN, then the rank M (M<N) update to G, for obtaining G, ,

is,

(A.31)

where R, T: RM @ RN and S : RM & RM, then the inverse of G,,, is given by the

following,
(A.32)
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where,
(A.33)

Positive Definiteness:
Let s be any vector such that s E RN. A matrix G : RN & RN is said to be

positive definite if,

A.2. Vector Representation Under a Set of Normal Conjugate Directions:
Theorem A.1:

Since conjugate directions are linearly independent, any vector v (E RN can be
represented in terms of a set of directions s;, i CE {01, .., N-1} conjugate about a
positive definite full rank matrix G : RN & RN as follows,

(A.34)

where,
(A.35)

Furthermore, there always exists a full set of N directions s; conjugate about G

since the eigenvectors of G form such a set.

Theorem A.2:

Consider the matrix,
(A.36)
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where s, ERN,iE {0,1, .., N-1} are a set of directions mutually conjugate about

the positive definite full rank matrix G : RN & RN. Post multiplication of H by Gs,

gives,
(A.37)

Therefore, H is the representation of the inverse of G,
(A.38)
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Appendix B

Abbreviations



Abbreviation

BFGS
BR.
C.P.
DFP
Ex/LS
FLOP
F-R
GRI
GRII
Inex/LS
LRLS
NN

O
PNR
PRII
PRIIT
Pwll
Pwi2
RLS
SD
SSVM
XOR

Description
Broyden-Fletcher-Goldfarb-Shanno
Broyden

Continuous Partan
Davidon-Fletcher-Powell
Exact Line Search
Floating Point Operation
Fletcher-Reeves
Greenstadt |

Greenstadt 11
Inexact Line Search
Learning Recursive Least Squares
Neural Network
Oren

Projected-Newton-Raphson

Pearson 11

Pearson 111

Powell 1

Powell 2
Recursive Least Squares
Steepest Descent
Self-Scaling Variable Metric

Exclusive-OR
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