H. S. M. Beigi'

C.J. Li

Department of Mechanical Engineering,
Columbia University,
New York, NY 10027

Learning Algorithms for Neural
Networks Based on Quasi-Newton
Methods With Self-Scaling

Previous studies have suggested that, for moderate sized neural networks, the use
of classical Quasi-Newton methods yields the best convergence properties among
all the state-of-the-art [1). This paper describes a set of even better learning algorithms
based on a class of Quasi-Newton optimization techniques called Self-Scaling Vari-
able Metric (SSVM) methods. One of the characteristics of SSVM methods is that
they provide a set of search directions which are invariant under the scaling of the
objective function. With an XOR benchmark and an encoder benchmark, simula-
tions using the SSVM algorithms for the learning of general feedforward neural
networks were carried out to study their performance. Compared to classical Quasi-
Newton methods, it is shown that the SSVM method reduces the number of iterations
required for convergence by 40 percent to 60 percent that of the classical Quasi-
Newton methods which, in general, converge two to three orders of magnitude faster
than the steepesi descent techniques.

1 Introduction

This paper describes new learning algorithms for feedfor-
ward neural networks. In such a network, a neuron sums a
number of weighted inputs and a bias and passes the result
through a nonlinear activation function. Multilayer neural net-
works consist of a large number of these neurons. Before a
neural network can be used for any purpose, the weights con-
necting inputs to neurons and bias values should be adjusted
so that outputs of the network will match desired patterns for
specific sets of inputs. The methods used for adjusting these
weights and parameters to provide such a match are usually
refered to as learning algorithms.

Rumelhart et al. [2] rederived independently and brought
the back-propagation learning algorithm for multilayer feed-
forward neural nets to the attention of the community in 1986.
They used the generalized delta rule to compute the needed
gradient for this steepest decent method. However, low rates
of convergence were seen in practically every problem.
Lippmann [3) states, ‘‘One difficulty noted by the backward
propagation algorithm is that in many cases the number of
presentations of training data required for convergence has
been large (more than 100 passes through all the training data).”
A few methods [3-4] have been proposed to increase the rate
of convergence of learning by making very restrictive as-
sumptions such as linearity. Other more practical methods have
recently been proposed for accelerating the convergence of the
back-propagation technigue (see for example [5-11]).

Reference [7] used a relative entropy as the error measure

'"Presently, IBM Research Division, Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.
_ Contributed by the Dynamic Systems and Control Division for publication
inthe JourRNAL oF DYNAMIC SYSTEMS, MEASUREMENT, AND CoNTROL. Manuscript
received .by the Dynamic Systems and Control Division July 16, 1990; revised
manuscript received June, 1992, Associate Technical Editor: R. Shoureshi.

38 / Vol. 115, MARCH 1993

instead of the quadratic function and the steepest descent is
used to find the minimum. Reference [8] formulated the learn-
ing problem into solving a set of coupled ordinary differential
equations and was able to speed up the learning by one order
of magnitude. However, the performance index used by the
paper is really a misleading one because it does not include
the computation load incurred by the solving of the equations.
Reference [9] suggested the use of conjugate gradient method
which is a first order descent method with an inferior per-
formance to Quasi-Newton methods. Reference [10] derived
a second order method which approximates Newton’s method.
However, the scheme requires the evaluation of a square matrix
with components of second partial derivatives which are not
available for a general neural network. Reference [11] evalu-
ated back-propagation, steepest descent with line search, mo-
mentum method, and classical Quasi-Newton methods and
concluded that the use of Quasi-Newton methods is mandated
by their excellent convergence properties.

In general, steepest descent techniques have good perform-
ance while away from a local minimum and require a lot of
iterations to converge while close to the minimum. On the
other hand, Newton’s method usually converges fast in the
vicinity of the minimum. In addition, Newton’s minimization
technique handles functions with ill-conditioned Hessian mat-
rices elegantly [12]. It would be desirable to take advantage
of the properties of steepest descent when the state is far from
the minimum and then to use Newton’s method in the vicinity
of the minimum.

For using Newton'’s method, the first gradient and the matrix
of second partial derivatives (Hessian) should be evaluated.
Due to the absence of a general explicit expression for the
Hessian matrix of a feedforward neural network, one would
settle for its approximation. One way would be to look at the
problem in a manner similar to Rumelhart’s technique and to

Transactions of the ASME

to use a momentum method which would approximate the
diagonal elements of the Hessian matrix and stay ignorant of
the off-diagonal elements [13].

The difficulties associated with the use of Newton’s method
for neural network learning are: 1) the absence of a general
explicit expression for the Hessian matrix of a neural network;
2) the inversion of the Hessian; and 3) the optimal switching
from steepest descent to Newton’s method. _

In [1], the authors investigated nine different Quasi-Newton
methods and the results were compared to a steepest descent
technique with line search. Quasi-Newton methods use an it-
erative process to approximate the inverse Hessian matrix %)
that no explicit expression for the second derivative is needed
for carrying out a Newton-like search. If one selects the initial
estimate to be an identity matrix, it is a steepest descent tech-
nique at the beginning and gradually changes into Newton’s
method as the estimate becomes the inverse of the Hessian,
This paper describes a set of even better learning algorithms
based on an improved class of Quasi-Newton optimization
techniques called Self-Scaling Variable Metric (SSVM) meth-
ods. One of the characteristics of SSVM methods is that they
provide a set of search directions which are invariant under
the scaling of the objective function [14-15]. In practice, it
has been observed that the SSVM methods have better con-
vergence proprieties than the classical Quasi-Newton methods.

2 Problem Formulation

In this section, the learning problem will be treated within
the context of nonlinear optimization. Section 2.1 formulates
an objective function and provides an explicit expression for
the gradient of the objective function. Section 2.2 applies the
results under Section 2.1 to an example of a three-layer neural
network that consists of three nonlinear neurons of sigmoid
activation function.

2.1 The Objective Function, State Vector, and Gradient
Evaluation. The learning problem of feedforward neural net-
works will be formulated within the context of nonlinear op-
timization. Figure 1 is a multilayer feedforward neural network
consisting of L layers, made of a number of neurons. The
network is fully interconnected from one layer to the next layer
and the connections are represented by lines which are char-
acterized by their weights. Based on the weights of all the input
connections, each neuron computes a weighted sum of all the
inputs and evaluates a nonlinear activation function such as a
logistic function using the sum. The result of this function
evaluation is the output of the neuron. The objective of a
learning algorithm is to find the weights and the bias values,
to minimize the discrepancy between the outputs of a neural
network at layer L and the desired outputs, corresponding to
a set of specific inputs. The set of input-output patterns used
for the learning is termed as “‘exemplars.”” Let us define:

[[1,L] where L is the number of layers in the network

ng€[1,N;] where N, is the number of neurons in layer /

PE[1,P] where P is the number of input-output patterns in

j the training exemplars)

Wapn as the weight of the mth input to neuron # in layer
!

Ofm as the output of neuron n in layer / for input pattern

fon gs the desired output of neuron n in layer L for
input pattern p

{om as the mth input component of the input pattern p
to the network

o as the bias, or the threshold, or neuron 7 in layer

/

Based on the above definitions, the following vectors are de-
fined. A weight vector of all the weights of a neuron, say,
heuron n in layer /:

Journal of Dynamic Systems, Measurement, and Control

Layer L
L-1
2
1
I 11 Il 2 I 13 I 1M
I L, Loy I
Fig. 1 Muitilayer feedforward neural network

T i '} /
Wy = [wn';ls Wns +eey ‘l’nﬂ'ﬂ]

A vector formed by concatenating all the weight vectors in
layer I

W=l of, ..., off]
A vector of all the bias values in layer /:

¢T=[1, 6, ..., di]
A state vector, which contains all the state variables to be
adjusted in layer /, formed by concatenating «'” and ¢'T;

xﬂ' - [¢J'T. wJ'T]

Finally, a super state vector, which contains all the state vari-

ables to be adjusted in the neural network, formed by con-
catenating all the state vectors:

xT=[x'T, 27, ..., xI7)

Let’s formally define our objective function as the sum of the
square of output errors in the output layer (layer L) of a neural
network over a set of exemplars. Then,

pr N
EX)=2] 3} (O, ~tpn))? (m

pP=1 np =1

Define,

then,
E=}E, @

Consequently, the gradient vector of the objective function is

MARCH 1993, Vol. 115/ 39

P
g=V.E= > V.E,=[3E/dx, E/3x,........1"
p=1
and the Hessian matrix of the objective function is

P
G=vV2iE= EV,Z,E, (Hessian Matrix)

p=1 :
PE _PE
ax0x, oxdx;

| ¥E PE

T axdx, dxdxy

The dimension of the Hessian is the square of the dimension
of the super-state vector x.

To find the gradient vector of the objective function, one
has to find partial derivatives of the objective function with
respect to any component, X;, of the state vector x.

P
OE _ & 3, -
oax; e ax;
and by chain rule,
Ey 2 ok 30m,
e 2 Zl (Opny = tony) 2, @
np=
where, if x; is the bias
L !
90pm; 805n, 30pn, -
a¢fl‘.| ao,fpllf a¢‘l’!’|
or if x; is a weight
0%, 005, B0ps,
3l 30bn, B0, G2
Ay Py gy
and,
30" L aO[LH—H])
! =11 a"’;f;’;*_ —*1 (using the index notation) (6)
Opry 1121 9Opmp.iiiy

In Eq. (6) the indicial notation has been employed, i.e.,

I+1 ! N 1+1]
d0pn,, , 90pm, 00pn,, | 30pn, .)
% 301 30 dol} (traditional notation)
Opny 90pnj_y =1 9%pmy 90pm_y

In our implementation of neural networks, the following
logistic function is used for the activation function

1

o ™
1+e Py
where,
Ni-1
| -1 /
Spny = Z (Opmy_ @y) + &y
ﬂ.t_1=1
Then
30pn,
=dj, ®)
] Py
3,
ao;”‘f d' o~}
30,{’”!4_ priOpn;_ ©
and,
30pn,
o
30;,;',' |— pnfnny (10)
where,

40 / Vol. 115, MARCH 1993

1

1 e_"l’"t
e (11)
P (1 + e hmi)?
However, from Eq. (7),
e =1 (12)
py
Rewrite Eq. (11) using (12),
hny= Opn (1~ Opn) (13)
Substitute (13) into (8), (9), and (10),
]
Opn,
T Opn(1 = Opn) (14)
o
ST = Oy Opn(1 = O (b
Wnpmy_y
and,
30’
= Ghpy_ Oon1— Opn) (16)
aop,.,_,

For this logistic activation function, one uses Eqgs. (14-16)
to evaluate Eq. (5) and then Eq. (4). Finally, components of
the gradient vector are evaluated using Eq. (3). In the following
section, an example of deriving an explicit expression for the
gradient vector will be given.

The purpose of the above derivations is to derive the gradient
vector for the least square objective function (1). Back-prop-
agation algorithm does not provide components of the gradient
vector explicitly and does not have the gradient vector in a
vector form which is needed for the Quasi-Newton method.
Additionally, the back-propagation method is really just an
implementation of the steepest descent method. A derivation
based on the genuine mathematic notations such as the chain
rule and the gradient vector can provide a more general per-
spective.

2.2 Example: TheExclusive-OR (XOR)Problem. Take
the example of a network of three neurons (Fig. 2) which is

%1

i i
p1 p2
Fig. 2 The exclusive-or network

Transactions of the ASME

Table 1 Desired input-output patterns for the XOR bench-
mark

Input patterns Output patterns

0 0 0
1 0 1
0 1 1
1 1 0

employed to simulate the exclusive-OR (XOR) logic pattern
(Table 1).)
The objective function of minimization will then be,

4

E=Z (01— tp)?

p=1

and the super state vector is defined by the following sequence
of definitions,

¢'"=[¢},43]
&’ =[¢i]
@'"= [wi1,wi2,wh1,w50]
oT=[wh,0h]
x" = [$1,6%,0l1,01,0h,0h,¢] 0t 0h]
From Eq. (4),
3E,
ax;
and from Egs. (14-16),

30’
—’% =op(l

a0
=20} —) Eﬁf

2
= opl)

Q
RN

Oplopl(l opl)

o},gof,l(l -0}

a
;ﬁ whohi(1 - 0h1)op(1—ohy)

HEHE LS
11l

£

w.zopl(l 0p1)052(1 = 057)

(8]
QJ
=]
'Ea—
Q| Qe
g|.,_

I
I

2

=w10p1(1 — 031)ip10pi(1 — 0p1)

@
£

QJ
%1
=1}
> &)

]

2 2 2w
=wN10p1(1 — 051) ip0p(1

I
5
|

1
- Opl)

=1
g
=)

(=1}
&
&
=]

=1}
Lg.,
=1}
Lgh,
Q
|§_

2 2 Bae I
= w120p1(1 — 0p1)ip10p2(1 — 0p2)

1]
§._
(=1}
=]

'?‘ |
Qo
£

@Lf—

=2 =whoRi(1 = 021)in0p(1 - 0p)

S
§
S

S

Using the above equations, the elements of the gradient vector
for an exemplar, v, E,, can be evaluated and then the elements
of the gradient vector, Vv, E, are found using Eq. (3).

3 Variable Metric (Quasi-Newton) Minimization Tech-

niques
First, Quasi-Newton minimization techniques will be briefly
reviewed. Let x* denote the minimum of the objective function
E. Further assume that the current state is x, and define Ax;
to be the difference between the states at x* and x;, namely,
X " =X+ AX;- (17)

Write the Taylor series expansion of E(x") about x, assum-

Journal of Dynamic Systems, Measurement, and Control

ing that every update of the state vector should drive the state
vector to the optimal value x*,

. 1
E(x")=E(x¢) + VIElxkAxk+5 AX{VIE\, Ax,+ O(Ax})

(18)

By using the previously defined symbols for the first and second

gradients of E (g and G), with a subscript k to denote their
evaluation at x;, we may write (18) as,

1

E(x")=E(xy) + gAxi+ Ax[Gilxe + O(Axi) (19)

If we disregard the higher than second order terms in (19) and

thus approximate E with a quadratic function in the vicinity

of x; and x*, then the quadratic approximation of (19) may

be written as follows:
1

E(x") ~E(x:) + gAx, +5 AX[GiAxy (20

Note that for a minimum of E(x*), a necessary condition

is that v ,*E be zero. However, keeping the current state x;

constant and then taking the gradients of both sides of (20),
since x* = x;+ Axy,

Vi E=gr+ Gexy @1
Setting the gradient of E at x* to zero gives,
8kt GrAx=0 (22)
or,
Axe=~ — Gy ‘& (23)
Decompose Ax, into a direction s, and a magnitude A,
Axp= NSy (24)
where
Sg=— GE :gt
1G; gl

Since E is not a quadratic function in x;, the step size A, may
not be the optimal one. Therefore, a line search method is
usually used to find A; along direction s; to minimize the
function.

Xps 1 =Xg+ N:Sk 2%)

This method provides quadratic convergence and is very
efficient in the vicinity of the minima. However, there are
various problems associated with this approach. The first prob-
lern is that in order for E to always descend in value, the matrix
G~ ! should be pomtwe definite. Since E is generally not truly
quadratic, G~ could become indefinite or even negative def-
inite. There are many techniques developed to maintain a po-
sitive definite approximation of the inverse Hessian matrix
(G~ ") such that the quadratic information in the Hessian matrix
will be used. Among these methods for keeping a positive
definite approximation of the inverse Hessian matrix are
Greenstadt’s method [16], Marquardt [17], Levenberg [18],
and the alternative of Goldfeld et al. [19].

The second problem is that for networks with a small number
of neurons it might be feasible to find an explicit expression
of the Hessian matrix. However, for larger networks it will
become a very difficult task.

Additionally, it is not practical to take the inverse of a large
Hessian matrix even if the Hessian is available. The time in-
volved in taking this inverse in most cases will be more costly
than in taking more steps for convergence using a simpler
method such as the steepest descent method.

Problem one can be solved by the noted methods above.
However, problems two and three make using Newton’s method
quite impractical. These limitations are reasons for looking at
the following alternatives which in turn will solve the discussed
problems and still keep a superlinear rate of convergence.

MARCH 1993, Vol. 115/ 41

From Eq. (25), we can write the following generalized re-
cursive algorithm to update the state vector such that a min-
imum E will be approached:

Xies1 =Xk~ MNeHy ViE(K) (26)

where A} is a weighting factor, and Hj is a square symmetric
matrix. Depending on the matrix H, that is used in Eq. (26),
different optimization algorithms will be provided. Therefore,
H, multiplied by the gradient of E will provide a direction and
A is the optimal step in that descent direction as provided by
some line search method. If Hj in Eq. (26) is made equivalent
to the identity (/) matrix, then the method reduces to the
steepest descent technique which provides linear convergence.
Making H; equivalent to the inverse of the Hessian matrix
(G™") as previously defined, the method will reduce to the
Newton minimization technique which provides quadratic con-
vergence in the vicinity of the local minima.

Quasi-Newton methods will start with an approximation to
the inverse-Hessian matrix such as the identity matrix. Variable
metric updates for H; are then used, leading to different types
of Quasi-Newton methods. In these methods, a rank-one or
rank-two update is provided for H,, denoted by AH,, which
will lead to the convergence of H to G~! for quadratic func-
tions. Updates to matrix H, are done recursively in different
directions of the inverse-Hessian space, based on the infor-
mation obtained from the function behavior in those direc-
tions. Depending on whether these updates are done in one or
two directions at a time, rank-one or rank-two methods are
generated. Quasi-Newton methods in general try to keep the
hereditary relation Eq. (27a) satisfied.

HAgy= (27a)

where Agy=gi.1— 8- Condition (274) is automatically satis-
fied for a quadratic function if H is the exact inverse Hessian.
However, since in Quasi-Newton methods, the inverse Hessian
is supposed to be an approximation, and due to causality in
updating H, instead of H Ag;= Ax;, the methods try to keep
the following relation satisfied at each step k,

Hy 1 Age=Ax; (27b)

This relationship is referred to as the Quasi-Newton condition
and it means that the inverse Hessian matrix should be updated
such that relation Eq. (27b) is satisfied.

Reference [1] gives a thorough review of some classical rank-
one and rank-two updates used by Quasi-Newton methods and
their performance for neural network learning. Here, a mere
listing of the equations for the Pearson II and BFGS updates
is given by Egs. (28) and (29), respectively. Pearson II and
BFGS were found to yield the best results among all the classic
Quasi-Newton methods.

Pearson’s No. 2 update is given by the following [20]:

(Axi— Hibge) Axi
AxiAgy

It should be noted that Pearson’s methods do not guarantee
retainment of positive definiteness of the inverse Hessian Ma-
trix. Therefore, it is a good idea to reset the inverse Hessian
approximation to Identity every N iterations. Methods of this
nature are called cyclic.

In 1970, Broyden [21], Fletcher [22], Goldfarb [23], and
Shanno [24] suggested the BFGS update (29) which is dual
with the DFP method [25].

AH,= (28)

A= 1 +Ar8kaASk AxpAx]
£ ATxqAg,) ATxAg,
_ AxATgiHy+ Hidgibxi

e 29)

The BFGS update has all the qualities of the DFP method plus
the fact that it has been noted to work exceptionally well with
inexact line searches and a global convergence proof exists [26]

42 [Vol. 115, MARCH 1993

for the BFGS. No such proof has yet been done for the con-
vergence of DFP.

Self-Scaling Variable Metric (SSVM) Algorithms. One
characteristic of classic Quasi-Newton methods is that the
search directions provided by them change if the objective
function is scaled. This is obviously undesirable. Self-Scaling
Variable Metric (SSVM) methods were developed to provide
directions that are invariant under scaling of the objective
function. Experience shows that the SSVM methods, in gen-
eral, are especially advantages for large scale problems. This
makes them ideal candidates for neural network learning.

Equation (30) is a Self-Scaling Variable Metric (SSVM) up-
date, for the approximation to the inverse Hessian matrix [14].

T
HyAgAgiHy e Bkuicvk) i ;

30
AglH.Ag: axng, ©0

Hiyy =#-k(Hk—

where,

Ax, Hg
wtKe L m(E_)
ve= (A8HiA8) T\ G g ~ aglH g,

This SSVM algorithm maintains positive definiteness of the
approximation to the inverse Hessian matrix, provided Ax-
TAg,>0 for all k. This condition can be imposed by using a
line search method which satisfies the following relation,

81+ 1A% = 0giAX, (31

where o€[r,1] and 7€[0,1/2] are parameters of the line search
termination [25]. Eventually, this means that the curvature
estimate should be positive where the updating is done. The
same argument is true for lots of other variable metric methods
such as the DFP and BFGS methods [1]. For a general non-
linear function, the SSVM algorithm provides a set of search
directions which are invariant under scaling of the objective
function. Also, for a quadratic objective function, the algo-
rithm has the property that it monotonically reduces the con-
dition number of the inverse Hessian approximate.

Equation (30) leaves a lot of freedom in choosing the pa-
rameters u; and 0. Oren suggested in [14] that u, and 6, be
picked in the following manner,

T
=y ig';l.A:‘; +(1—) ﬁ
and ¢y, 0,€[0,1]. This choice will provide a set of u; such that,
Axpdgi - _AxiHi'Ax
AgiHbg: ' * AxiAg

Another approach for picking the aforementioned param-
eters, based mainly on heuristics, is to keep u, as close as
possible to unity and to pick 6; such as to offset an estimated
bias in det(H,G) relative to unity [15]. A third approach for
picking these parameters is to minimize the condition number
of the inverse Hessian matrix which will provide better number
stability of the updating algorithm. Reference [15] gives four
sets of switching rules for picking these parameters.

4 Simulations and Results

Computer simulations using two benchmarks, the classical
XOR and an encoder, have been carried out to study the
performance of the SSVM methods. The input dnd desired
output patterns of these two benchmarks are given in Tables
1 and 2, respectively. The neural network used for the XOR
problem is shown in Fig. 2. A similar architecture was used
for the encoding problem with four hidden neurons and four
inputs. Three measures of the performance of the algorithms
are the number of times the input patterns had to be presented,
the number of updates which were made to the initial guess
for the inverse Hessian matrix to achieve convergence, and the
number of floating point operations required to achieve con-

Transactions of the ASME

Table2 Desired input-output pattern for the encoder bench-
mark

I1 12 3 14

Desired output

OO v
COOO =
(=
COOmm
=00

Table 3 Simulation results
SD BFGS Prsn 0(1,.1)0(1,.2) O(1,.3) 0(1,.5) O(.5,.5)

E2.8e-5 4¢-16 6e-7 9e-9 0 0 - 8e-7
xor P833 15 36 12 8 11 o 153

G865 6 11 4 3 4
F 8e6 2.5¢42.2¢4 1.led 8.5¢3 l.led 1.4c4

E 85 1el7 267 7c6 806 37c6 211 1<

1 6 54 30 42 33 20 28

Encoder ; 1994 11 16 9 13 10 6 9
F 3.8¢6 5.1¢5 1.4¢5 1.3¢5 1.9e5 1.4e5 8.7c4 1.3e$

*0(¢,0)’s denote the two parameters of Eq. (30).
‘- indicates that the algorithm failed to converge in the allotted
number of iterations.

vergence. In simulation of all the above algorithms, an inexact
line search was used.

In picking the parameters u; and 6, a trial and error method
was used. The switching method of [14] did not perform well
compared to prechosen constant parameters. This result agrees
with experiments done by Oren [14]. Also, the switching meth-
ods of [15] which were demonstrated to have done well were
not used here due to their impracticality for neural networks.
In these switching methods, an update of the Hessian matrix
should be kept as well as the inverse Hessian. This would
require a lot of memory when a large network is involved.

Results of the computer simulation of the SSVM algorithms
are given in Table 3 together with results obtained from steepest
descent and the best two classical Quasi-Newton methods,
BFGS and Pearson. In Table 3, E is the final value of the
objective function, P is the number of presentations of all
input patterns, G is the number of updates made to the initial
inverse Hessian estimate, and F is the number of floating point
operations (FPO) required to reach convergence. Termination
of the minimization took place when E<10~* or when the
magnitude of change in objective function in two consecutive
iterations, |E,,—E,l, is less than 107,

5 Conclusion

Looking at the state of the arts in neural network learning,
a need was noted for faster learning algorithms. Steepest de-
scent techniques are known to perform well, away from the
minima, and Newton’s method works well, in the vicinity of
the minima. Therefore, for a fast learning algorithm, one should
take advantage of the best of the two methods. The evaluation
and inversion of the Hessian matrix posed a difficult and time-
consuming problem for Newton’s method. Quasi-Newton
methods start off with an estimate of the inverse Hessian matrix
equal to the identity matrix. This matrix provides the steepest
descent direction. As recursions are done, the Quasi-Newton
methods provide an update to the inverse Hessian matrix. This
will, in the limit, provide an optimal direction of descent based
on the momentum of the inverse Hessian matrix.

Previous studies have suggested that, for moderate sized
neural networks, the use of classical Quasi-Newton methods
yields the best convergence properties among all the state-of-
the-art methods [1]. This paper describes a set of even better
learning algorithms based on a class of Quasi-Newton opti-
Mization techniques called Self-Scaling Variable Metric (SSVM)
methods. One of the characteristics of SSVM methods is that
they provide a set of search directions which are invariant under

Journal of Dynamic Systems, Measurement, and Control

the scaling of the objective function. Compared to classical
Quasi-Newton methods, the SSVM method positively reduces
the number of floating point operations required for conver-
gence. The superiority of the SSVM method is equally obvious
with both benchmarks. To reach the convergence, the SSVM
method needs only about 40 percent and 60 percent of FPO’s
required by the best classical Quasi-Newton method, Pearson
11, which needs 0.3 percent and 3.7 percent of FPO’s required
by the steepest descent in XOR and Encoder problems re-

spectively.

References

1 Beigi, H. S. M., and Li, C. J., ““A New Set of Learning Algorithms for
Neural Networks,’” presented at the ISMM International Symposium, Computer
Applications in Design, Simulation and Analysis, March 1990, New Orleans,
LA

2 Rumelhart, D. E., Hinton, G. E., and Williams, R. J., ‘‘Learning Internal
Representations by Error Propagation,” in D. E. Rumelhart and J. L. Mec-
Clelland, eds., Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1, 1986, MIT Press, pp. 675-695.

3 Lippmann, R. P., “An Introduction to Computing with Neural Nets,”
IEEE ASSP Magazine, April 1987, pp. 4-22.

4 Parker, D. B., *“A Comparison of Algorithms for Neuron-Like Cells,”
Neural Networks for Computing, AIP Conference Proceeding 151, Snowbird,
Utah, 1986, pp. 327-332.

5 Fahlman, S. E., “Faster-Learning Variations on Back-Propagation: .4n
Empirical Study,” 1988 Connectionist Models Summer School, 1988, pp. 38-
51.

6 Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Alkon, D.
L., ““Accelerating the Convergence of the Back-Propagation Method,*’ Biolog-
ical Cybernetics, Vol, 59, 1988, pp. 257-263.

7 Solla, S. A., Levin, E., and Fleisher, M., *“Accelerated Learning in Layered
Neural Networks,”” Complex Systems, Vol. 2, 1988, pp. 625-640.

8 Owens, A. J., and Filkin, D. L., “Efficient Training of the Back-Prop-
agation Network by Solving a System of Stiff Ordinary Differential Equations,”’
IEEE/INNS International Conference on Neural Networks, June 19-22, 1989,
Washington, D.C., Vol. 2, pp. 381-386.

9 Makram-Ebeid, S., Sirat, J.-A., and Viala, J.-R., ““A Rationalized Error
Back-Propagation Learning Algorithm," Proc. of the 1989 International Joint
Conference on Neural Networks, Vol. 2, Washington, D.C., July 1989, pp.
373-380.

10 Parker, D. B., “Optimal Algorithms for Adaptive Networks: Second Order
Back-Propagation, Second Order Direct Propagation, and Second Order Heb-
bian Learning,”” Proceedings of the 1987 IEEE International Conference on
Neural Networks, Vol. 2, pp. 593-600.

11 Watrous, R. L., *‘Learning Algorithms for Connectionist Networks: Ap-
plied Gradient Methods of Nonlinear Optimization,”* Proceedings of the 1987
IEEE International Conference on Neural Networks, Vol. 2, pp. 619-627.

12 Himmelblau, D. M., Applied Nonlinear Programming, McGraw-Hill,
New York, 1972,

13 Becker, S., and Le Cunn, Y., “Improving the Convergence of Back-
Propagation Learning With Second Order Methods,’* 1988 Connectionist Models
Summer School, 1988, pp. 29-37.

14 Oren, S. S., ““On the Selection of Parameters in Self-Scaling Variable
Metric Algorithms,”” Mathematical Programming, Vol. 7, 1974, pp. 351-367.

15 Oren, S. S., and Spedicato, E., “‘Optimal Conditioning of Self-Scaling
Variable Metric Algorithms,” Mathematical Programming, Vol. 10, 1976, pp.
T0-90.

16 Greenstadt, J., ““On the Relative Effectiveness of Gradient Methods,”’
Mathematics of Computation, Vol. 21, 1967, pp. 360-367.

17 Marquardt, D. W., **An Algorithm of Least Squares Estimation of Non-
linear Parameters,”” SIAM Journal, Vol. 11, 1963, p. 431.

18 Levenberg, K. L., Quart. Appl. Math., Vol. 2, 1944, p. 164,

19 Goldfeld, S. M., Quandt, R. E., and Trotter, H. F., **‘Maximization by
Quadratic Hill Climbing,"" Ec trica, Vol. 34, 1966, p. 541.

20 Pearson, J. D., ““Variable Metric Methods of Minimization,” Computer
Journal, Vol. 12, 1969, pp. 171-178.

21 Broyden, C. G., **The Convergence of a Class of Double Rank Minimi-
zation Algorithms,’’ Parts I and I1, J. Inst. Maths. Appins., Vol. 6, 1970, pp.
76-79, 222-231.

22 Fletcher, R., ‘A New Approach to Variable Metric Algorithms,’” Com-
puter Journal, Vol. 8, 1970, pp. 317-322.

23 Goldfarb, D., **A Family of Variable Metric Methods Derived by Vari-
ational M " Math tics of Comp jon, Vol. 24, 1970, pp. 23-26.

24 Shanno, D. F., “Conditioning of Quasi-Newton Method for Function
Minimization,”” Mathematics of Computation, Vol. 24, 1970, pp. 647-656.

25 Fletcher, R., Practical Methods of Optimization, Wiley, New York, 1987,
pp. 54-56.

26 Huang, H. Y., “Unified Approach to Quadratically Convergent Algo-
rithms for Function Minimization,'’ Journal of Optimization Theory and Ap-
plications, Vol. 5, No. 6, 1970, pp. 405-422.

MARCH 1993, Vol. 115/ 43

