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ˆ

X

p0(x)

(

log2

p0(x)

p1(x)

)

dx ≥− log2(1) (7.89)

The left hand side of Equation 7.89, based on Equation 7.84, is just DKL (0 → 1).
Therefore, we can say,

DKL (0 → 1) ≥ 0 (7.90)

which is a very important result, proving an important property of a divergence.

Note that Equation 7.90 may be written in terms of the expected values of the

f (q(x)) and f (p(x)), where f (x) is given by Equation 7.87,

−

ˆ

X

p0(x) log2 p1(x)dx ≥−

ˆ

X

p0(x) log2 p0(x)dx (7.91)

where the left hand side of Equation 7.91 is known as the cross entropy of the true

density of X with any other density, p1(x), and is denoted by h̄(p0 → p1) for the

continuous case and H (p0 → p1) for the discrete case. Note the following formal

definitions of cross entropy:

Definition 7.16 (Differential Cross Entropy). The differential cross entropy,

h̄(p0 → p1), of two probability density functions, p0(x) and p1(x) is given by the

following expression, when the Lebesgue measure is used,

h̄(p0 → p1)
∆
= −

∞̂

−∞

p0(x) log2 p1(x)dx (7.92)

Definition 7.17 (Cross Entropy). Consider the discrete source of Section 7.3. The

cross entropy, H (p0 → p1), of two different probability mass functions, p0(X) and

p1(X), for the discrete random variable X is given by,

H (p0 → p1)
∆
= −

n

∑
i=1

p0(Xi) log2 p1(Xi) (7.93)

Therefore,

h̄(p0) ≤ h̄(p0 → p1) (7.94)

for the continuous case and

H (p0) ≤ H (p0 → p1) (7.95)

for the discrete case.

Equation 7.94 is known as Gibb’s inequality and it states that the Entropy is al-

ways less than or equal to the cross entropy, where p0(x) is the true probability
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density function of X and p1(x) is any other density function.

Before Kullback and Leibler [12], Jeffreys [10] defined a measure, now known

as Jeffreys’ divergence, which is related to the Kullback-Leibler directed divergence

as follows,

DJ (0 ↔ 1) =

ˆ

X

log2

dP0

dP1
d(P0 −dP1) (7.96)

Jeffreys called it an invariant for expressing the difference between two distributions

and denoted it as I2. It is easy to see that this integral is really the sum of the two

Kullback and Leibler directed divergences, one in favor of H0 and the other in favor

of H1. Therefore,

DJ (0 ↔ 1) = DKL (0 → 1)+DKL (1 → 0) (7.97)

=

ˆ

X

(p0(x)− p1(x)) log2

p0(x)

p1(x)
dx (7.98)

It is apparent that DJ (0 ↔ 1) is symmetric with respect to hypotheses H0 and H1,

so it is a measure of the divergence between these hypotheses. Although DJ (0 ↔ 1)
is symmetric, it still does not obey the triangular inequality property, so it cannot be

considered to be a metric.

Throughout this book, we use D (0 → 1) to denote a directed divergence, D (0 ↔ 0)
to denote a (symmetric) divergence and d (0,1) for a distance. The subscripts, such

as the KL in DKL (0 → 1), specify the type of directed divergence, divergence or

distance.

It was mentioned that the nature of the measure is such that it may specify any

type of random variable including a discrete random variable. In that case, the KL-

divergence may be written as,

DKL (0 → 1) = ∑
xi∈X

P0(xi) log2

P0(xi)

P1(xi)
(7.99)

See Section 8.2.1 for the expression for the KL-divergence between two normal den-

sity probability density functions.

7.6.1 Mutual Information

Consider a special case of relative entropy for a random variable defined in the

two-dimensional Cartesian product space (X ,X), where {X = R2} – see Sec-

tion 6.2.2. Then the relative entropy (KL-divergence) in favor of hypothesis H0 ver-


