7 Information Theory

$$\int_{\mathscr{X}} p_0(x) \left(\log_2 \frac{p_0(x)}{p_1(x)} \right) dx \ge -\log_2(1)$$
(7.89)

The left hand side of Equation 7.89, based on Equation 7.84, is just $\mathscr{D}_{KL}(0 \to 1)$. Therefore, we can say,

$$\mathscr{D}_{KL}(0 \to 1) \ge 0 \tag{7.90}$$

which is a very important result, proving an important property of a divergence.

Note that Equation 7.90 may be written in terms of the *expected values* of the f(q(x)) and f(p(x)), where f(x) is given by Equation 7.87,

$$-\int_{\mathscr{X}} p_0(x) \log_2 p_1(x) dx \ge -\int_{\mathscr{X}} p_0(x) \log_2 p_0(x) dx \tag{7.91}$$

where the left hand side of Equation 7.91 is known as the *cross entropy* of the true density of X with any other density, $p_1(x)$, and is denoted by $\hbar(p_0 \rightarrow p_1)$ for the continuous case and $\mathscr{H}(p_0 \rightarrow p_1)$ for the discrete case. Note the following formal definitions of *cross entropy*:

Definition 7.16 (Differential Cross Entropy). The differential cross entropy, $\hbar(p_0 \rightarrow p_1)$, of two probability density functions, $p_0(x)$ and $p_1(x)$ is given by the following expression, when the Lebesgue measure is used,

$$\hbar(p_0 \to p_1) \stackrel{\Delta}{=} -\int_{-\infty}^{\infty} p_0(x) \log_2 p_1(x) dx \tag{7.92}$$

Definition 7.17 (Cross Entropy). Consider the discrete source of Section 7.3. The cross entropy, $\mathscr{H}(p_0 \to p_1)$, of two different probability mass functions, $p_0(X)$ and $p_1(X)$, for the discrete random variable X is given by,

$$\mathscr{H}(p_0 \to p_1) \stackrel{\Delta}{=} -\sum_{i=1}^n p_0(X_i) \log_2 p_1(X_i)$$
(7.93)

Therefore,

$$\hbar(p_0) \le \hbar(p_0 \to p_1) \tag{7.94}$$

for the continuous case and

$$\mathscr{H}(p_0) \le \mathscr{H}(p_0 \to p_1) \tag{7.95}$$

for the discrete case.

Equation 7.94 is known as *Gibb's inequality* and it states that the Entropy is always less than or equal to the *cross entropy*, where $p_0(x)$ is the true probability

290

7.6 Relative Entropy

density function of X and $p_1(x)$ is any other density function.

Before *Kullback and Leibler* [12], *Jeffreys* [10] defined a measure, now known as *Jeffreys' divergence*, which is related to the *Kullback-Leibler directed divergence* as follows,

$$\mathscr{D}_J(0 \leftrightarrow 1) = \int_{\mathscr{X}} \log_2 \frac{dP_0}{dP_1} d(P_0 - dP_1)$$
(7.96)

Jeffreys called it an invariant for expressing the difference between two distributions and denoted it as I_2 . It is easy to see that this integral is really the sum of the two Kullback and Leibler directed divergences, one in favor of H_0 and the other in favor of H_1 . Therefore,

$$\mathscr{D}_{J}(0 \leftrightarrow 1) = \mathscr{D}_{KL}(0 \to 1) + \mathscr{D}_{KL}(1 \to 0)$$
(7.97)

$$= \int_{\mathscr{X}} (p_0(x) - p_1(x)) \log_2 \frac{p_0(x)}{p_1(x)} dx$$
(7.98)

It is apparent that $\mathscr{D}_J(0 \leftrightarrow 1)$ is symmetric with respect to hypotheses H_0 and H_1 , so it is a measure of the *divergence* between these hypotheses. Although $\mathscr{D}_J(0 \leftrightarrow 1)$ is *symmetric*, it still does not obey the *triangular inequality* property, so it cannot be considered to be a *metric*.

Throughout this book, we use $\mathscr{D}(0 \to 1)$ to denote a *directed divergence*, $\mathscr{D}(0 \leftrightarrow 0)$ to denote a (symmetric) *divergence* and d(0,1) for a distance. The subscripts, such as the *KL* in $\mathscr{D}_{KL}(0 \to 1)$, specify the type of *directed divergence*, *divergence* or *distance*.

It was mentioned that the nature of the measure is such that it may specify any type of random variable including a *discrete random variable*. In that case, the *KL-divergence* may be written as,

$$\mathscr{D}_{KL}(0 \to 1) = \sum_{x_i \in X} P_0(x_i) \log_2 \frac{P_0(x_i)}{P_1(x_i)}$$
(7.99)

See Section 8.2.1 for the expression for the *KL-divergence* between two normal density probability density functions.

7.6.1 Mutual Information

Consider a special case of *relative entropy* for a random variable defined in the *two-dimensional Cartesian product space* $(\mathcal{X}, \mathfrak{X})$, where $\{\mathcal{X} = \mathcal{R}^2\}$ – see Section 6.2.2. Then the *relative entropy* (*KL-divergence*) in favor of hypothesis H_0 ver-